Introduction
Physical activity (PA) is one of the most important tasks to improve physical and mental health.1 In 2008, the US government issued minimum daily recommendations for aerobic and muscle strengthening activities for all individuals.2 These recommendations require the inclusion of moderate to vigorous physical activity (MVPA) to enhance overall health. Moderate PA is defined as skeletal muscle contractions that produce energy expenditures that are greater than or equal to 3 and less than 6 metabolic equivalents (METS) and vigorous PA is any activity that produces greater than 6 METS.3
Numerous instruments have been devised to measure PA in the free-living environment that range from self-report questionnaires to devices such as pedometers, heart rate monitors and accelerometers. ActiGraph is one of the leading manufacturers of accelerometers, with applications that are suitable for researchers and clinical scientists to estimate PA levels via regression equations. These equations have been validated using gold standard laboratory measures, such as doubly labelled water and calorimetry.4–8
The GT3X+ model is a triaxial accelerometer produced by ActiGraph that may be worn on the hip, thigh, ankle or wrist. It can provide data on energy expenditure, time spent in various static positions and intensity levels of PA. Previous validation studies on the GT3X+ have been conducted on healthy and clinical paediatric, adult and geriatric populations. Remoortel et al and Garcıa-Masso et al noted strong correlations (r=0.79 and 0.86, respectively) between the GT3X+ and a portable indirect calorimeter as individuals with chronic obstructive pulmonary disease (Remoortel et al) and paraplegia (Garcia-Masso et al) performed a standardised protocol of activities of daily living.5 9 Based on this and other published reports, the GT3X+ is one of the more accurate research-grade instruments used to assess free-living PA.4–6 10
Fitbit manufactures over 10 different consumer-based PA trackers, several of which use triaxial accelerometry to capture activity counts that are displayed either on a wrist-worn unit or via a compatible cellular phone or personal computer.
The Fitbit provides data to the consumer like the ActiGraph, but with a user-friendly application. The validity of the Fitbit to measure energy expenditure, step count and PA under free-living conditions have been examined. Tully et al noted a high correlation between the Fitbit Zip (r>0.91) and the GT3X+ and Yamax CW700 pedometer.11 They noted a significant difference between the Fitbit Zip and the GT3X+ with the Fitbit Zip systematically recording a higher number (7477 (Fitbit) vs 6774 (GT3X+)) of steps per day. Gomersall et al10 compared the Fitbit One to the GTX3. The correlations for the Fitbit One ranged from 0.72 to 0.90 for estimated steps per day and time spent performing MVPA per day that the Fitbit manufacturers defines as ‘active minutes’. In this study, the Fitbit One overestimated daily steps by 8% and underestimated MVPA time by 46%. Paul et al12 measured the 7-day step count of 32 community-dwelling adults using either the Fitbit One or Zip and the ActiGraph worn simultaneously. They found that the Fitbit models had excellent agreement (ICC2,1=0.94) with the ActiGraph despite the Fitbit overestimating their subjects’ step count by 716.7 per day.
The Fitbit has also been tested under laboratory conditions. Gusmer et al reported strong correlations between the Fitbit Ultra and ActiGraph GT1M for step count during slow walking (r=0.974, p<0.001) and brisk walking (r=0.996, p<0.001) tasks on a treadmill for young adults.13 The energy expenditure between the two devices were moderately correlated (r=0.584, p=0.011) during the slow walking task. Diaz et al14 assessed the reliability and validity of three Fitbit One devices worn simultaneously (two placed on the right hip and one placed on the left hip) and two wrist-worn Fitbit Flex devices (worn on each wrist) with indirect calorimetry and actual step counts via a video during a four-stage treadmill test. They found the correlations ranged between 0.97 to 0.99 between both devices of the Fitbit and the observed step counts with mean differences that ranged between −3.1 and −0.3 steps for the Fitbit One and −26.3 to −2.9 steps for the Fitbit Flex. The correlations between the Fitbit One and the Fitbit Flex were 0.86 and 0.88, respectively, with indirect calorimetry.
Self-reported measures such as the International Physical Activity Questionnaire (IPAQ) offer a convenient, low cost method to quantify the volume of various types of PA performed. The IPAQ's use for population-based epidemiological studies is well supported; however, its reported criterion-referenced validity to accurately assess PA levels when compared with instrumented methods is moderate to low. Wanner et al15 performed a cross-sectional study to validate the IPAQ long form with the GT3X+ among individuals aged 18–84 years who speak three different languages and residing in Switzerland. They found the highest correlations (r=0.41) for vigorous PA and sitting time (r=0.42), noting that the IPAQ overestimated PA but underestimated sitting time. Garriguet et al16 reported a correlation of 0.20 between the IPAQ and the Actical accelerometer for measuring time spent performing MVPA, which is a large discrepancy from the previous study. Kim et al17 performed a meta-analysis that used 21 studies published between the year 2004 and 2010 to determine the convergent validity between the IPAQ and other instruments that measure PA. They pooled 152 studies to generate mean effect sizes between the IPAQ and other self-report instruments, pedometers and accelerometers across five different PA categories. Overall, they found small to medium effect sizes with the highest and lowest pooled correlations found for vigorous and moderate PA, respectively.
The purpose of this cross-sectional study was to determine the criterion validity among the various models of the Fitbit and IPAQ using the ActiGraph GT3X+ as the reference measure.