Article Text

Download PDFPDF

A pilot biomechanical assessment of curling deliveries: is toe sliding more likely to cause knee injury than flatfoot sliding?
  1. Iona Robertson,
  2. Graham P Arnold,
  3. Weijie Wang,
  4. Tim S Drew,
  5. Sadiq Nasir,
  6. Calum MacDonald,
  7. Rami J Abboud
  1. Department of Orthopaedic & Trauma Surgery, Institute of Motion Analysis & Research (IMAR), TORT Centre, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
  1. Correspondence to Professor Rami J Abboud, Institute of Motion Analysis & Research (IMAR), Department of Orthopaedic & Trauma Surgery, TORT Centre, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK; r.j.abboud{at}dundee.ac.uk

Abstract

Background The aim of this study was to determine whether toe sliding is more likely to cause knee injuries than flatfoot sliding in curling.

Methods Twelve curlers participated in the study, each delivering 12 stones. Six stones per volunteer were delivered using a flatfoot slide and six were delivered using a toe slide. The Pedar-X in-shoe pressure system recorded the plantar pressure during each of the slides, while a sagittal plane digital video recorded the body position of the curler. Measurements were taken from the video recordings using a software overlay program (MB Ruler), and this, combined with the Pedar-X data, gave the overall joint force in the tuck knee.

Results The knee joint force for toe sliding was more than double that of flatfoot sliding (p<0.05). There was a strong correlation between the increase in knee joint force and the increase in the moment arm of the ground reaction force. Images produced using the three-dimensional Vicon system confirm that toe sliding produces a larger moment arm than flatfoot sliding.

Conclusion Injuries are more likely to occur in toe sliding, compared with flatfoot sliding, due to the increase in force and moment, pushing the weight of the curler forward over the knee, which could make the adopted position less stable. Curlers might consider avoiding toe sliding to reduce the risk of knee injuries if the two types of delivery could be performed equally well.

  • curling
  • biomechanics
  • knee injuries
  • toe sliding
  • flatfoot sliding

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • Acknowledgements The authors would like to acknowledge the following individuals and centres for their valuable contribution and advice: Michael Goodfellow, Team GB Curler; David Jones, Coach, Royal Caledonian Curling Club; Ian S Christie, Illustrator, IMAR; Dundee Ice Arena; The Peak Sports Village, Stirling; and Stirling Young Curlers.

  • Contributors IR: Substantial contribution to the conception and design of the project, collecting and analysing the data, and writing the manuscript. GPA: Substantial contribution to the design of the project, data collection and software analysis, and revising the manuscript critically. WW: Significant contribution to the design and statistical analysis, and helped in preparing the manuscript and revising it critically. TSD: Significant contribution to the design and the associated physics, and helped in preparing the manuscript and revising it critically. SN: Significant contribution to data collection and interpretation of data. CM: Significant contribution to data collection and analysis. RJA: Substantial contribution to the conception and design of the project, supervised the project, and helped in preparing the manuscript and revising it critically for final submission.

  • Competing interests None declared.

  • Patient consent Obtained.

  • Ethics approval University of Dundee Research Ethics Committee.

  • Provenance and peer review Not commissioned; externally peer reviewed.