Skip to main content
Log in

Once and future signaling

G protein-coupled receptor kinase control of neuronal sensitivity

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

G protein-coupled receptors (GPCRs) are the most numerous class of cell surface receptor, and substances acting through GPCRs mediate many critical signaling events and physiological processes. GPCR sensitivity and signaling is dynamic, responding rapidly to adjust to changes in the ambient level of stimulation of target cells. One important mediator of such receptor sensitivity is the family of GPCR kinases (GRKs). Like heterotrimeric G proteins, GRKs recognize agonist-bound, activated receptors, and this recognition promotes catalytic activation of GRKs, resulting in the preferential phosphorylation of activated receptors. GRK-phosphorylated receptors are then targeted by arrestin proteins, which bind to phosphorylated receptors. Arrestin-bound receptors are uncoupled from heterotrimeric G proteins, resulting in decreased sensitivity to further receptor stimulation (desensitization). Arrestin-bound receptors are also accelerated into internalization pathways and linked to distinct arrestin-mediated signaling pathways. GRKs thus serve as gatekeepers for receptors, terminating some signaling pathways and initiating others. One major outstanding question concerning GRKs understanding the mechanisms by which any particular receptor subtype (of the 800 or so in the body) is regulated by a specific GRK(s), and the consequences of this specificity. An understanding of this regulatory specificity could allow targeting of GRK function to ameliorate diseases involving GPCR dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose C., James M., Barnes G., et al. (1992) A novel G protein-coupled receptor kinase gene cloned from 4p16.3. Hum. Mol. Genet. 1(9), 697–703.

    Article  PubMed  CAS  Google Scholar 

  • Arriza J. L., Dawson T. M., Simerly R. B., et al. (1992) The G protein-coupled receptor kinases beta ARK1 and beta ARK2 are widely distributed at synapses in rat brain. J. Neurosci. 12(10), 4045–4055.

    PubMed  CAS  Google Scholar 

  • Barrett T. B., Hauger R. L., Kennedy J. L., et al. (2003) Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. Mol. Psychiatry 8(5), 546–557.

    Article  PubMed  CAS  Google Scholar 

  • Benovic J. L., DeBlasi A., Stone W. C., Caron M. G., and Lefkowitz R. J. (1989) Beta-adrenergic receptor kinase: primary structure delineates a multigene family. Science 246(4927), 235–240.

    Article  PubMed  CAS  Google Scholar 

  • Benovic J. L. and Gomez J. (1993) Molecular cloning and expression of GRK6. A new member of the G protein-coupled receptor kinase family. J. Biol. Chem. 268(26), 19,521–19,527.

    CAS  Google Scholar 

  • Benovic J. L., Mayor F., Jr., Staniszewski C., Lefkowitz R. J., and Caron M. G. (1987) Purification and characterization of the beta-adrenergic receptor kinase. J. Biol. Chem. 262(19), 9026–9032.

    PubMed  CAS  Google Scholar 

  • Benovic J. L., Onorato J. J., Arriza J. L., et al. (1991) Cloning, expression, and chromosomal localization of beta-adrenergic receptor kinase 2. A new member of the receptor kinase family. J. Biol. Chem. 266(23), 14,939–14,946.

    CAS  Google Scholar 

  • Bunemann M., Lee K. B., Pals-Rylaarsdam R., Roseberry A. G., and Hosey M. M. (1999) Desensitization of G protein-coupled receptors in the cardiovascular system. Annu. Rev. Physiol. 61, 169–192.

    Article  PubMed  CAS  Google Scholar 

  • Cao T. T., Deacon H. W., Reczek D., Bretscher A., and von Zastrow M. (1999) A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 401(6750), 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Carman C. V., Barak L. S., Chen C., et al. (2000) Mutational analysis of Gbetagamma and phospholipid interaction with G protein-coupled receptor kinase 2. J. Biol. Chem. 275(14), 10,443–10,452.

    Article  CAS  Google Scholar 

  • Carman C. V., Lisanti M. P., and Benovic J. L. (1999) Regulation of G protein-coupled receptor kinases by caveolin. J. Biol. Chem. 274(13), 8858–8864.

    Article  PubMed  CAS  Google Scholar 

  • Carman C. V., Parent J. L., Day P. W., et al. (1999) Selective regulation of Galpha (q/11) by an RGS domain in the G protein-coupled receptor kinase, GRK2. J. Biol. Chem. 274(48), 34,483–34,492.

    Article  CAS  Google Scholar 

  • Chen C. K., Burns M. E., Spencer M., et al. (1999) Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc. Natl. Acad. Sci. USA 96(7), 3718–3722.

    Article  PubMed  CAS  Google Scholar 

  • Chen C. Y., Dion S. B., Kim C. M., and Benovic J. L. (1993) Beta-adrenergic receptor kinase. Agonist-dependent receptor binding promotes kinase activation. J. Biol. Chem. 268(11), 7825–7831.

    PubMed  CAS  Google Scholar 

  • Choi D. J., Koch W. J., Hunter J. J., and Rockman H. A. (1997) Mechanism of beta-adrenergic receptor desensitization in cardiac hypertrophy is increased beta-adrenergic receptor kinase. J. Biol. Chem. 272(27), 17,223–17,229.

    CAS  Google Scholar 

  • Chuang T. T., LeVine H., 3rd., and De Blasi A. (1995) Phosphorylation and activation of beta-adrenergic receptor kinase by protein kinase C. J. Biol. Chem. 270(31), 18,660–18,665.

    CAS  Google Scholar 

  • Chuang T. T., Paolucci L., and De Blasi A. (1996) Inhibition of G protein-coupled receptor kinase subtypes by Ca2+/calmodulin. J. Biol. Chem. 271(45), 28,691–28,696.

    CAS  Google Scholar 

  • Daaka Y., Pitcher J. A., Richardson M., Stoffel R. H., Robishaw J. D., and Lefkowitz R. J. (1997) Receptor and G betagamma isoform-specific interactions with G protein-coupled receptor kinases. Proc. Natl. Acad. Sci. USA 94(6), 2180–2185.

    Article  PubMed  CAS  Google Scholar 

  • Day P. W., Carman C. V., Sterne-Marr R., Benovic J. L., and Wedegaertner P. B. (2003) Differential interaction of GRK2 with members of the G alpha q family. Biochemistry 42(30), 9176–9184.

    Article  PubMed  CAS  Google Scholar 

  • De Blasi A., Parruti G., and Sallese M. (1995) Regulation of G protein-coupled receptor kinase subtypes in activated T lymphocytes. Selective increase of beta-adrenergic receptor kinase 1 and 2. J. Clin. Invest. 95(1), 203–210.

    Article  PubMed  Google Scholar 

  • DebBurman S. K., Ptasienski J., Benovic J. L., and Hosey M. M. (1996) G protein-coupled receptor kinase GRK2 is a phospholipid-dependent enzyme that can be conditionally activated by G protein betagamma subunits. J. Biol. Chem. 271(37), 22,552–22,562.

    CAS  Google Scholar 

  • DebBurman S. K., Ptasienski J., Boetticher E., Lomasney J. W., Benovic J. L., and Hosey M. M. (1995) Lipid-mediated regulation of G protein-coupled receptor kinases 2 and 3. J. Biol. Chem. 270(11), 5742–5747.

    Article  PubMed  CAS  Google Scholar 

  • Diaz A., Pazos A., Florez J., Ayesta F. J., Santana V., and Hurle M. A. (2002) Regulation of mu-opioid receptors, G protein-coupled receptor kinases and beta-arrestin 2 in the rat brain after chronic opioid receptor antagonism. Neuroscience 112(2), 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Eichmann T., Lorenz K., Hoffmann M., et al. (2003) The amino-terminal domain of G protein-coupled receptor kinase 2 is a regulatory Gbeta gamma binding site. J. Biol. Chem. 278(10), 8052–8057.

    Article  PubMed  CAS  Google Scholar 

  • Elorza A., Sarnago S., and Mayor F., Jr. (2000) Agonist-dependent modulation of G protein-coupled receptor kinase 2 by mitogen-activated protein kinases. Mol. Pharmacol. 57(4), 778–783.

    PubMed  CAS  Google Scholar 

  • Erdtmann-Vourliotis M., Mayer P., Ammon S., Riechert U., and Hollt V. (2001) Distribution of G protein-coupled receptor kinase (GRK) isoforms 2,3,5 and 6 mRNA in the rat brain. Brain Res. Mol. Brain Res. 95(1, 2), 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Fan X., Zhang J., Zhang X., Yue W., and Ma L. (2002) Acute and chronic morphine treatments and morphine withdrawal differentially regulate GRK2 and GRK5 gene expression in rat brain. Neuropharmacology 43(5), 809–816.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson S. S. (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53(1), 1–24.

    PubMed  CAS  Google Scholar 

  • Firsov D. and Elalouf J. M. (1997) Molecular cloning of two rat GRK6 splice variants. Am. J. Physiol. 273(3 Part 1), C953-C961.

    PubMed  CAS  Google Scholar 

  • Fredericks Z. L., Pitcher J. A., and Lefkowitz R. J. (1996) Identification of the G protein-coupled receptor kinase phosphorylation sites in the human beta2-adrenergic receptor. J. Biol. Chem. 271(23), 13,796–13,803.

    CAS  Google Scholar 

  • Freeman J. L., De La Cruz E. M., Pollard T. D., Lefkowitz R. J., and Pitcher J. A. (1998) Regulation of G protein-coupled receptor kinase 5 (GRK5) by actin. J. Biol. Chem. 273(32), 20,653–20,657.

    Article  CAS  Google Scholar 

  • Freedman N. J., Kim L. K., Murray J. P., et al. (2002) Phosphorylation of the platelet-derived growth factor receptor-beta and epidermal growth factor receptor by G protein-coupled receptor kinase-2. Mechanisms for selectivity of desensitization. J. Biol. Chem. 277(50), 48,261–48,269.

    Article  CAS  Google Scholar 

  • Freeman J. L., Pitcher J. A., Li X., Bennett V., and Lefkowitz R. J. (2000) Alpha-actinin is a potent regulator of G protein-coupled receptor kinase activity and substrate specificity in vitro. FEBS Lett. 473(3), 280–284.

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov R. R., Bohn L. M., Sotnikova T. D., et al. (2003) Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron 38(2), 291–303.

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov R. R., Bohn L. M., Walker J. K., et al. (1999) Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice. Neuron 24(4), 1029–1036.

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov R. R., Premont R. T., Bohn L. M., Lefkowitz R. J., and Caron M. G. (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27, 107–144.

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov R. R., Premont R. T., Caron M. G., and Lefkowitz R. J. (2000) Reply: receptor specificity of G protein-coupled receptor kinases. Trends Pharmacol. Sci. 21(10), 366–367.

    Article  PubMed  CAS  Google Scholar 

  • Goehler H., Lalowski M., Stelzl U., et al. (2004) A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease. Mol. Cell 15(6), 853–865.

    Article  PubMed  CAS  Google Scholar 

  • Gorodovikova E. N., Gimelbrant A. A., Senin, I. I., and Philippov P. P. (1994) Recoverin mediates the calcium effect upon rhodopsin phosphorylation and cGMP hydrolysis in bovine retina rod cells. FEBS Lett. 349(2), 187–190.

    Article  PubMed  CAS  Google Scholar 

  • Grange-Midroit M., Garcia-Sevilla J. A., Ferrer-Alcon M., La Harpe R., Huguelet P., and Guimon J. (2003) Regulation of GRK 2 and 6, beta-arrestin-2 and associated proteins in the prefrontal cortex of drug-free and antidepressant drug-treated subjects with major depression. Brain Res. Mol. Brain. Res. 111(1, 2), 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Gurevich V. V. and Gurevich E. V. (2003) The new face of active receptor bound arrestin attracts new partners. Structure (Camb) 11(9), 1037–1042.

    Article  CAS  Google Scholar 

  • Gurevich V. V. and Gurevich E. V. (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol. Sci. 25(2), 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Haga K., Tsuga H., and Haga T. (1997) Ca2+-dependent inhibition of G protein-coupled receptor kinase 2 by calmodulin. Biochemistry 36(6), 1315–1321.

    Article  PubMed  CAS  Google Scholar 

  • Hall R. A., Premont R. T., Chow C. W., et al. (1998) The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392(6676), 626–630.

    Article  PubMed  CAS  Google Scholar 

  • Hall R. A., Premont R. T., and Lefkowitz R. J. (1999) Heptahelical receptor signaling: beyond the G protein paradigm. J. Cell Biol. 145(5), 927–932.

    Article  PubMed  CAS  Google Scholar 

  • Hall R. A., Spurney R. F., Premont R. T., et al. (1999) G protein-coupled receptor kinase 6A phosphorylates the Na(+)/H(+) exchanger regulatory factor via a PDZ domain-mediated interaction. J. Biol. Chem. 274(34), 24,328–24,334.

    Article  CAS  Google Scholar 

  • Haribabu B. and Snyderman R. (1993) Identification of additional members of human G protein-coupled receptor kinase multigene family. Proc. Natl. Acad. Sci. USA 90(20), 9398–9402.

    Article  PubMed  CAS  Google Scholar 

  • Hata J. A. and Koch W. J. (2003) Phosphorylation of G protein-coupled receptors: GPCR kinases in heart disease. Mol. Interv. 3(5), 264–272.

    Article  PubMed  CAS  Google Scholar 

  • Hausdorff W. P., Caron M. G., and Lefkowitz R. J. (1990) Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J. 4(11), 2881–2889.

    PubMed  CAS  Google Scholar 

  • Hildreth K. L., Wu J. H., Barak L. S., et al. (2004) Phosphorylation of the platelet-derived growth factor receptor-beta by G protein-coupled receptor kinase-2 reduces receptor signaling and interaction with the Na(+)/H(+) exchanger regulatory factor. J. Biol. Chem. 279(40), 41,775–41,782.

    Article  CAS  Google Scholar 

  • Hu L. A., Chen W., Premont R. T., Cong M., and Lefkowitz R. J. (2002) G protein-coupled receptor kinase 5 regulates beta 1-adrenergic receptor association with PSD-95. J. Biol. Chem. 277(2), 1607–1613.

    Article  PubMed  CAS  Google Scholar 

  • Inglese J., Koch W. J., Caron M. G., and Lefkowitz R. J. (1992) Isoprenylation in regulation of signal transduction by G protein-coupled receptor kinases. Nature 359(6391), 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Khani S. C., Nielsen L., and Vogt T. M. (1998) Biochemical evidence for pathogenicity of rhodopsin kinase mutations correlated with the oguchi form of congenital stationary night blindness. Proc. Natl. Acad. Sci. USA 95(6), 2824–2827.

    Article  PubMed  CAS  Google Scholar 

  • Krasel C., Dammeier S., Winstel R., Brockmann J., Mischak H., and Lohse M. J. (2001) Phosphorylation of GRK2 by protein kinase C abolishes its inhibition by calmodulin. J. Biol. Chem. 276(3), 1911–1915.

    Article  PubMed  CAS  Google Scholar 

  • Kunapuli P. and Benovic J. L. (1993) Cloning and expression of GRK5: a member of the G protein-coupled receptor kinase family. Proc. Natl. Acad. Sci. USA 90(12), 5588–5592.

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz R. J. and Whalen E. J. (2004) beta-arrestins: traffic cops of cell signaling. Curr. Opin. Cell. Biol. 16(2), 162–168.

    Article  PubMed  CAS  Google Scholar 

  • Levay K., Satpaev D. K., Pronin A. N., Benovic J. L., and Slepak V. Z. (1998) Localization of the sites for Ca2+-binding proteins on G protein-coupled receptor kinases. Biochemistry 37(39), 13,650–13,659.

    Article  CAS  Google Scholar 

  • Liggett S. B., Freedman N. J., Schwinn D. A., and Lefkowitz R. J. (1993) Structural basis for receptor subtype-specific regulation revealed by a chimeric beta 3/beta 2-adrenergic receptor. Proc. Natl. Acad. Sci. USA 90(8), 3665–3669.

    Article  PubMed  CAS  Google Scholar 

  • Lodowski D. T., Pitcher J. A., Capel W. D., Lefkowitz R. J., and Tesmer J. J. (2003) Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science 300(5623), 1256–1262.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi M. S., Kavelaars A., Cobelens P. M., Schmidt R. E., Schedlowski M., and Heijnen C. J. (2001) Adjuvant arthritis induces down-regulation of G protein-coupled receptor kinases in the immune system. J. Immunol. 166(3), 1635–1640.

    PubMed  CAS  Google Scholar 

  • Lombardi M. S., Kavelaars A., Schedlowski M., et al. (1999) Decreased expression and activity of G protein-coupled receptor kinases in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FASEB J. 13(6), 715–725.

    PubMed  CAS  Google Scholar 

  • Loudon R. P. and Benovic J. L. (1997) Altered activity of palmitoylation-deficient and isoprenylated forms of the G protein-coupled receptor kinase GRK6. J. Biol. Chem. 272(43), 27,422–27,427.

    Article  CAS  Google Scholar 

  • Loudon R. P., Perussia B., and Benovic J. L. (1996) Differentially regulated expression of the G protein-coupled receptor kinases, betaARK and GRK6, during myelomonocytic cell development in vitro. Blood 88(12), 4547–4557.

    PubMed  CAS  Google Scholar 

  • Luttrell L. M. and Lefkowitz R. J. (2002) The role of beta-arrestins in the termination and transduction of G protein-coupled receptor signals. J. Cell Sci. 115(Part 3), 455–465.

    PubMed  CAS  Google Scholar 

  • Lyubarsky A. L., Chen C., Simon M. I., and Pugh E. N., Jr. (2000) Mice lacking G protein receptor kinase 1 have profoundly slowed recovery of cone-driven retinal responses. J. Neurosci. 20(6), 2209–2217.

    PubMed  CAS  Google Scholar 

  • Maudsley S., Zamah A. M., Rahman N., et al. (2000) Platelet-derived growth factor receptor association with Na(+)/H(+) exchanger regulatory factor potentiates receptor activity. Mol. Cell Biol. 20(22), 8352–8363.

    Article  PubMed  CAS  Google Scholar 

  • Moepps B., Vatter P., Frodl R., et al. (1999) Alternative splicing produces transcripts encoding four variants of mouse G protein-coupled receptor kinase 6. Genomics 60(2), 199–209.

    Article  PubMed  CAS  Google Scholar 

  • Niculescu A. B. 3rd., Segal D. S., Kuczenski R., Barrett T., Hauger R. L., and Kelsoe J. R. (2000) Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol. Genomics 4(1), 83–91.

    PubMed  CAS  Google Scholar 

  • Ohguro H., Palczewski K., Ericsson L. H., Walsh K. A., and Johnson R. S. (1993) Sequential phosphorylation of rhodopsin at multiple sites. Biochemistry 32(21), 5718–5724.

    Article  PubMed  CAS  Google Scholar 

  • Onorato J. J., Gillis M. E., Liu Y., Benovic J. L., and Ruoho A. E. (1995) The beta-adrenergic receptor kinase (GRK2) is regulated by phospholipids. J. Biol. Chem. 270(36), 21,346–21,353.

    CAS  Google Scholar 

  • Oppermann M., Freedman N. J., Alexander R. W., and Lefkowitz R. J. (1996) Phosphorylation of the type 1A angiotensin II receptor by G protein-coupled receptor kinases and protein kinase C. J. Biol. Chem. 271(22), 13,266–13,272.

    CAS  Google Scholar 

  • Ozaita A., Escriba P. V., Ventayol P., Murga C., Mayor F., Jr., and Garcia-Sevilla J. A. (1998) Regulation of G protein-coupled receptor kinase 2 in brains of opiate-treated rats and human opiate addicts. J. Neurochem. 70(3), 1249–1257.

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K., Buczylko J., Kaplan M. W., Polans A. S., and Crabb J. W. (1991) Mechanism of rhodopsin kinase activation. J. Biol. Chem. 266(20), 12,949–12,955.

    CAS  Google Scholar 

  • Palczewski K., Kumasaka T., Hori T., et al. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480), 739–745.

    Article  PubMed  CAS  Google Scholar 

  • Penela P., Alvarez-Dolado M., Munoz A., and Mayor F., Jr. (2000) Expression patterns of the regulatory proteins G protein-coupled receptor kinase 2 and beta-arrestin 1 during rat postnatal brain development: effect of hypothyroidism. Eur. J. Biochem. 267(14), 4390–4396.

    Article  PubMed  CAS  Google Scholar 

  • Penela P., Ribas C., and Mayor F., Jr. (2003) Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell Signal. 15(11), 973–981.

    Article  PubMed  CAS  Google Scholar 

  • Penn R. B. and Benovic J. L. (1994) Structure of the human gene encoding the beta-adrenergic receptor kinase. J. Biol. Chem. 269(21), 14,924–14,930.

    CAS  Google Scholar 

  • Penn R. B., Pronin A. N., and Benovic J. L. (2000) Regulation of G protein-coupled receptor kinases. Trends Cardiovasc. Med. 10(2), 81–89.

    Article  PubMed  CAS  Google Scholar 

  • Perroy J., Adam L., Qanbar R., Chenier S., and Bouvier M. (2003) Phosphorylation-independent desensitization of GABA(B) receptor by GRK4. EMBO J. 22(15), 3816–3824.

    Article  PubMed  CAS  Google Scholar 

  • Perry S. J. and Lefkowitz R. J. (2002) Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol. 12(3), 130–138.

    Article  PubMed  CAS  Google Scholar 

  • Pierce K. L. and Lefkowitz R. J. (2001) Classical and new roles of beta-arrestins in the regulation of G protein-coupled receptors. Nat. Rev. Neurosci. 2(10), 727–733.

    Article  PubMed  CAS  Google Scholar 

  • Pierce K. L., Premont R. T., and Lefkowitz R. J. (2002) Seven-transmembrane receptors. Nat. Rev. Mol. Cell. Biol. 3(9), 639–650.

    Article  PubMed  CAS  Google Scholar 

  • Ping P., Anzai T., Gao M., and Hammond H. K. (1997) Adenylyl cyclase and G protein receptor kinase expression during development of heart failure. Am. J. Physiol. 273(2 Part 2), H707-H717.

    PubMed  CAS  Google Scholar 

  • Pitcher J. A., Fredericks Z. L., Stone W. C., et al. (1996) Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity. Location, structure, and regulation of the PIP2 binding site distinguishes the GRK subfamilies. J. Biol. Chem. 271(40), 24,907–24,913.

    CAS  Google Scholar 

  • Pitcher J. A., Freedman N. J., and Lefkowitz R. J. (1998) G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher J. A., Inglese J., Higgins J. B., et al. (1992) Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science 257(5074), 1264–1267.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher J., Lohse M. J., Codina J., Caron M. G., and Lefkowitz R. J. (1992) Desensitization of the isolated beta 2-adrenergic receptor by beta-adrenergic receptor kinase, cAMP-dependent protein kinase, and protein kinase C occurs via distinct molecular mechanisms. Biochemistry 31(12), 3193–3197.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher J. A., Tesmer J. J., Freeman J. L., Capel W. D., Stone W. C., and Lefkowitz R. J. (1999) Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J. Biol. Chem. 274(49), 34,531–34,534.

    Article  CAS  Google Scholar 

  • Pitcher J. A., Touhara K., Payne E. S., and Lefkowitz R. J. (1995) Pleckstrin homology domain-mediated membrane association and activation of the beta-adrenergic receptor kinase requires coordinate interaction with G beta gamma subunits and lipid. J. Biol. Chem. 270(20), 11,707–11,710.

    CAS  Google Scholar 

  • Premont R. T., Inglese J., and Lefkowitz R. J. (1995) Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J. 9(2), 175–182.

    PubMed  CAS  Google Scholar 

  • Premont R. T., Koch W. J., Inglese J., and Lefkowitz R. J. (1994) Identification, purification, and characterization of GRK5, a member of the family of G protein-coupled receptor kinases. J. Biol. Chem. 269(9), 6832–6841.

    PubMed  CAS  Google Scholar 

  • Premont R. T., Macrae A. D., Aparicio S. A., Kendall H. E., Welch J. E., and Lefkowitz R. J. (1999) The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation. J. Biol. Chem. 274(41), 29,381–29,389.

    Article  CAS  Google Scholar 

  • Premont R. T., Macrae A. D., Stoffel R. H., et al. (1996) Characterization of the G protein-coupled receptor kinase GRK4. Identification of four splice variants. J. Biol. Chem. 271(11), 6403–6410.

    Article  PubMed  CAS  Google Scholar 

  • Pronin A. N. and Benovic J. L. (1997) Regulation of the G protein-coupled receptor kinase GRK5 by protein kinase C. J. Biol. Chem. 272(6), 3806–3812.

    Article  PubMed  CAS  Google Scholar 

  • Pronin A. N., Satpaev D. K., Slepak V. Z., and Benovic J. L. (1997) Regulation of G protein-coupled receptor kinases by calmodulin and localization of the calmodulin binding domain. J. Biol. Chem. 272(29), 18,273–18,280.

    Article  CAS  Google Scholar 

  • Rockman H. A., Choi D. J., Rahman N. U., Akhter S. A., Lefkowitz R. J., and Koch W. J. (1996) Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc. Natl. Acad. Sci. USA 93(18), 9954–9959.

    Article  PubMed  CAS  Google Scholar 

  • Sallese M., Mariggio S., D’Urbano E., Iacovelli L., and De Blasi A. (2000) Selective regulation of Gq signaling by G protein-coupled receptor kinase 2: direct interaction of kinase N terminus with activated galphaq. Mol. Pharmacol. 57(4), 826–831.

    PubMed  CAS  Google Scholar 

  • Sallese M., Salvatore L., D’Urbano E., et al. (2000) The G protein-coupled receptor kinase GRK4 mediates homologous desensitization of metabotropic glutamate receptor 1. FASEB. J. 14(15), 2569–2580.

    Article  PubMed  CAS  Google Scholar 

  • Sarnago S., Elorza A., and Mayor F., Jr. (1999) Agonist-dependent phosphorylation of the G protein-coupled receptor kinase 2 (GRK2) by Src tyrosine kinase. J. Biol. Chem. 274(48), 34,411–34,416.

    Article  CAS  Google Scholar 

  • Seibold A., January B. G., Friedman J., Hipkin R. W., and Clark R. B. (1998) Desensitization of beta2-adrenergic receptors with mutations of the proposed G protein-coupled receptor kinase phosphorylation sites. J. Biol. Chem. 273(13), 7637–7642.

    Article  PubMed  CAS  Google Scholar 

  • Seibold A., Williams B., Huang Z. F., et al. (2000) Localization of the sites mediating desensitization of the beta(2)-adrenergic receptor by the GRK pathway. Mol. Pharmacol. 58(5), 1162–1173.

    PubMed  CAS  Google Scholar 

  • Shenoy S. K. and Lefkowitz R. J. (2003) Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem. J. 375(Part 3), 503–515.

    Article  PubMed  CAS  Google Scholar 

  • Shetzline M. A., Premont R. T., Walker J. K., Vigna S. R., and Caron M. G. (1998) A role for receptor kinases in the regulation of class II G protein-coupled receptors. Phosphorylation and desensitization of the secretin receptor. J. Biol. Chem. 273(12), 6756–6762.

    Article  PubMed  CAS  Google Scholar 

  • Shetzline M. A., Walker J. K., Valenzano K. J., and Premont R. T. (2002) Vasoactive intestinal polypeptide type-1 receptor regulation. Desensitization, phosphorylation, and sequestration. J. Biol. Chem. 277(28), 25,519–25,526.

    Article  CAS  Google Scholar 

  • Shiina T., Arai K., Tanabe S., et al. (2001) Clathrin box in G protein-coupled receptor kinase 2. J. Biol. Chem. 276(35), 33,019–33,026.

    Article  CAS  Google Scholar 

  • Stoffel R. H., Inglese J., Macrae A. D., Lefkowitz R. J., and Premont R. T. (1998) Palmitoylation increases the kinase activity of the G protein-coupled receptor kinase, GRK6. Biochemistry 37(46), 16,053–16,059.

    Article  CAS  Google Scholar 

  • Stoffel R. H., Randall R. R., Premont R. T., Lefkowitz R. J., and Inglese J. (1994) Palmitoylation of G protein-coupled receptor kinase, GRK6. Lipid modification diversity in the GRK family. J. Biol. Chem. 269(45), 27,791–27,794.

    CAS  Google Scholar 

  • Suo Z., Wu M., Citron B. A., Wong G. T., and Festoff B. W. (2004) Abnormality of G protein-coupled receptor kinases at prodromal and early stages of Alzheimer’s disease: an association with early beta-amyloid accumulation. J. Neurosci. 24(13), 3444–3452.

    Article  PubMed  CAS  Google Scholar 

  • Takagi C., Urasawa K., Yoshida I., et al. (1999) Enhanced GRK5 expression in the hearts of cardiomyopathic hamsters, J2N-k. Biochem. Biophys. Res. Commun. 262(1), 206–210.

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger R. Z., Ortiz J., Guitart X., and Nestler E. J. (1994) Chronic morphine administration increases beta-adrenergic receptor kinase (beta ARK) levels in the rat locus coeruleus. J. Neurochem. 63(5), 1983–1986.

    Article  PubMed  CAS  Google Scholar 

  • Tobin A. B. (1997) Phosphorylation of phospholipase C-coupled receptors. Pharmacol. Ther. 75(2), 135–151.

    Article  PubMed  CAS  Google Scholar 

  • Touhara K., Koch W. J., Hawes B. E., and Lefkowitz R. J. (1995) Mutational analysis of the pleckstrin homology domain of the beta-adrenergic receptor kinase. Differential effects on G beta gamma and phosphatidylinositol 4,5-bisphosphate binding. J. Biol. Chem. 270(28), 17,000–17,005.

    CAS  Google Scholar 

  • Ungerer M., Bohm M., Elce J. S., Erdmann E., and Lohse M. J. (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87(2), 454–463.

    PubMed  CAS  Google Scholar 

  • Ungerer M., Parruti G., Bohm M., et al. (1994) Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart. Circ. Res. 74(2), 206–213.

    PubMed  CAS  Google Scholar 

  • Usui H., Nishiyama M., Moroi K., et al. (2000) RGS domain in the amino-terminus of G protein-coupled receptor kinase 2 inhibits Gq-mediated signaling. Int. J. Mol. Med. 5(4), 335–340.

    PubMed  CAS  Google Scholar 

  • Vassilatis D. K., Hohmann J. G., Zeng H., et al. (2003) The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. USA 100(8), 4903–4908.

    Article  PubMed  CAS  Google Scholar 

  • Virlon B., Firsov D., Cheval L., et al. (1998) Rat G protein-coupled receptor kinase GRK4: identification, functional expression, and differential tissue distribution of two splice variants. Endocrinology 139(6), 2784–2795.

    Article  PubMed  CAS  Google Scholar 

  • Walker J. K., Gainetdinov R. R., Feldman D. S., et al. (2004) G protein-coupled receptor kinase 5 regulates airway responses induced by muscarinic receptor activation. Am. J. Physiol. Lung Cell Mol. Physiol. 286(2), L312-L319.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S., Khani S. C., Berson E. L., and Dryja T. P. (1997) Evaluation of the rhodopsin kinase gene in patients with retinitis pigmentosa. Exp. Eye Res. 65(2), 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Yu S. Y., Takahashi S., Arinami T., et al. (2004) Mutation screening and association study of the beta-adrenergic receptor kinase 2 gene in schizophrenia families. Psychiatry Res. 125(2), 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Zamah A. M., Delahunty M., Luttrell L. M., and Lefkowitz R. J. (2002) Protein kinase A-mediated phosphorylation of the beta 2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. J. Biol. Chem. 277(34), 31,249–31,256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Premont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Premont, R.T. Once and future signaling. Neuromol Med 7, 129–147 (2005). https://doi.org/10.1385/NMM:7:1-2:129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:7:1-2:129

Index Entries

Navigation