Skip to main content
Log in

Molecular characterization of dopamine D2 receptor isoforms tagged with green fluorescent protein

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a cleavable signal peptide fused to the enhanced green fluorescent protein (EGFP) was tagged to the extracellular N-terminus of the human dopamine D2 receptor short and long isoforms (D2S and D2L). Ligand-binding properties of EGFP-tagged receptors were essentially unchanged in comparison to their respective wild-type receptors. The dopamine-mediated activation of both EGFP-D2 isoforms generated a robust inhibition of adenylyl cyclase type 5 in intact cells. In addition, the receptor density of EGFP-D2S and EGFP-D2L in transfected human embryonic kidney 293 (HEK293) cells was not altered when compared to cells transfected with the untagged D2S and D2L. However, the receptor densities of untagged and EGFP-tagged D2L were significantly lower in comparison to those measured with D2S constructs. Moreover, the receptor density of EGFP-D2S and EGFP-D2L was differentially upregulated in cells treated with antipsychotic drugs. As assessed by confocal microscopy, both EGFP-D2 isoforms were present on the cell surface. Notably, in contrast to the predominant plasma membrane localization of EGFP-D2S, EGFP-D2L was visualized both on the plasma membrane and intracellularly before dopamine exposure. Importantly, EGFP-D2S and EGFP-D2L are robustly internalized after dopamine treatment. Overall, our data suggest a differential intracellular sorting of D2S and D2L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drews, J. (2000) Drug discovery: a historical perspective. Science 287, 1960–1964.

    Article  PubMed  CAS  Google Scholar 

  2. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G., and Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272.

    Article  PubMed  CAS  Google Scholar 

  3. Marinissen, M. J. and Gutkind, J. S. (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol. Sci. 22, 368–376.

    Article  PubMed  CAS  Google Scholar 

  4. Lin, X., Cornea, A., Janovick, J. A., and Conn, P. M. (1998) Vistralization of uncoccupied and occupied gonadotropin-releasing hormone receptors in living cells. Mol. Cell Endocrinol. 146, 27–37.

    Article  PubMed  CAS  Google Scholar 

  5. Kallal, L. and Benovic, J. L. (2000) Using green fluorescent proteins to study G-protein-coupled receptor localization and trafficking. Trends Pharmacol. Sci. 21, 175–180.

    Article  PubMed  CAS  Google Scholar 

  6. Weill, C., Galzi, J. L., Chasserot-Golaz, S., Goeldner, M., and Ilien, B. (1999) Functional characterization and potential applications for enhanced green fluorescent protein and epitope-fused human M1 muscarinic receptors. J. Neurochem. 73, 791–801.

    Article  PubMed  CAS  Google Scholar 

  7. Weill, C., Ilien, B., Goeldner, M., and Galzi, J. L. (1999) Fluorescent muscarinic EGFP-hM1 chimeric receptors: design, ligand binding and functional properties. J. Recept. Signal Transduct. Res. 19, 423–436.

    Article  PubMed  CAS  Google Scholar 

  8. Schulz, R., Wehmeyer, A., Schulz, K., and Murphy, J. (1999) Effect of phosducin on opioid receptor function. J. Pharmacol. Exp. Ther. 289, 599–606.

    PubMed  CAS  Google Scholar 

  9. Vollmer, J. Y., Alix, P., Chollet, A., Takeda, K., and Galzi, J. L. (1999) Subcellular compartmentalization of activation and desensitization of responses mediated by NK2 neurokinin receptors. J. Biol. Chem. 274, 37,915–37,922.

    CAS  Google Scholar 

  10. Perret, B. G., Wagner, R., Lecat, S., et al. (2003) Expression of EGFP-amino-tagged human mu opioid receptor in Drosophila Schneider 2 cells: a potential expression system for large-scale production of G-protein coupled receptors. Protein Expr. Purif. 31, 123–132.

    Article  PubMed  CAS  Google Scholar 

  11. Bockaert, J., Fagni, L., Dumuis, A., and Marin, P. (2004) GPCR interacting proteins (GIP). Pharmacol. Ther. 103, 203–221.

    Article  PubMed  CAS  Google Scholar 

  12. Bergson, C., Levenson, R., Goldman-Rakic, P. S., and Lidow, M. S. (2003) Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling. Trends Pharmacol. Sci. 24, 486–492.

    Article  PubMed  CAS  Google Scholar 

  13. Jeanneteau, F., Diaz, J., Sokoloff, P., and Griffon, N. (2004) Interactions of GIPC with dopamine D2, D3 but not D4 receptors define a novel mode of regulation of G protein-coupled receptors. Mol. Biol. Cell. 15, 696–705.

    Article  PubMed  CAS  Google Scholar 

  14. Bartlett, S. E., Enquist, J., Hopf, F. W., et al. (2005) Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc. Natl. Acad. Sci. USA 102, 11,521–11,526.

    Article  CAS  Google Scholar 

  15. Neve, K. A., Seamans, J. K., and Trantham-Davidson, H. (2004) Dopamine receptor signaling. J. Recept. Signal Transduct. Res. 24, 165–205.

    Article  PubMed  CAS  Google Scholar 

  16. Emilien, G., Maloteaux, J. M., Geurts, M., Hoogenberg, K., and Cragg, S. (1999) Dopamine receptors—physiological understanding to therapeutic intervention potential. Pharmacol. Ther. 84, 133–156.

    Article  PubMed  CAS  Google Scholar 

  17. Verhoeff, N. P. (1999) Radiotracer imaging of dopaminergic transmission in neuropsychiatric disorders. Psychopharmacology (Berl) 147, 217–249.

    Article  CAS  Google Scholar 

  18. Usiello, A., Baik, J.-H., Rouge-Pont, F., et al. (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408, 199–203.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, Y., Xu, R., Sasaoka, T., Tonegawa, S., Kung, M. P., and Sankoorikal, E. B. (2000) Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. J. Neurosci. 20, 8305–8314.

    PubMed  CAS  Google Scholar 

  20. Centonze, D., Usiello, A., Gubellini, P., et al. (2002) Dopamine D2 receptor-mediated inhibition of dopaminergic neurons in mice lacking D2L receptors. Neuropsychopharmacology 27, 723–726.

    Article  PubMed  CAS  Google Scholar 

  21. Centonze, D., Gubellini, P., Usiello, A., et al. (2004) Differential contribution of dopamine D2S and D2L receptors in the modulation of glutamate and GABA transmission in the striatum. Neuroscience 129, 157–166.

    Article  PubMed  CAS  Google Scholar 

  22. Cormack, B. P., Valdivia, R. H., and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.

    Article  PubMed  CAS  Google Scholar 

  23. Andersson, S., Davis, D. L., Dahlback, H., Jornvall, H., and Russell, D. W. (1989) Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 264, 8222–8229.

    PubMed  CAS  Google Scholar 

  24. Jou, W. M., Verhoeyen, M., Devos, R., et al. (1980) Complete structure of the hemagglutinin gene from the human influenza A/Victoria/3/75 (H3N2) strain as determined from cloned DNA. Cell 19, 683–696.

    Article  PubMed  CAS  Google Scholar 

  25. Guan, X. M., Kobilka, T. S., and Kobilka, B. K. (1992) Enhancement of membrane insertion and function in a type IIIb membrane protein following introduction of a cleavable signal peptide. J. Biol. Chem. 267, 21995–21998.

    PubMed  CAS  Google Scholar 

  26. Ishikawa, Y., Katsushika, S., Chen, L., Halnon, N. J., Kawabe, J., and Homcy, C. J. (1992) Isolation and characterization of a novel cardiac adenylylcyclase cDNA. J. Biol. Chem. 267, 13,553–13,557.

    CAS  Google Scholar 

  27. Tumova, K., Zhang, D., and Tiberi, M. (2004) Role of the fourth intracellular loop of D1-like dopaminergic receptors in conferring subtype-specific signaling properties. FEBS Lett. 576, 461–467.

    Article  PubMed  CAS  Google Scholar 

  28. Johnson, R. A. and Salomon, Y. (1991) Assay of adenylyl cyclase catalytic activity. Methods Enzymol. 195, 3–21.

    Article  PubMed  CAS  Google Scholar 

  29. Munson, P. J. and Rodbard, D. (1980) Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107, 220–239.

    Article  PubMed  CAS  Google Scholar 

  30. De Léan, A., Munson, P. J., and Rodbard, D. (1978) Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am. J. Physiol. 235, E97-E102.

    Google Scholar 

  31. De Léan, A., Hancock, A. A., and Lefkowitz, R. J. (1982) Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes. Mol. Pharmacol. 21, 5–16.

    PubMed  Google Scholar 

  32. Filtz, T. M., Artymyshyn, R. P., Guan, W., and Molinoff, P. B. (1993) Paradoxical regulation of dopamine receptors in transfected 293 cells. Mol. Pharmacol. 44, 371–379.

    PubMed  CAS  Google Scholar 

  33. Palczewski, K., Kumasaka, T., Hori, T., et al. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745.

    Article  PubMed  CAS  Google Scholar 

  34. Ilien, B., Franchet, C., Bernard, P., et al. (2003) Fluorescence resonance energy transfer to probe human M1 muscarinic receptor structure and drug binding properties. J. Neurochem. 85, 768–778.

    Article  PubMed  CAS  Google Scholar 

  35. Filtz, T. M., Guan, W., Artymyshyn, R. P., Facheco, M., Ford, C., and Molinoff, P. B. (1994) Mechanisms of up-regulation of D2L dopamine receptors by agonists and antagonists in transfected HEK-293 cells. J. Pharmacol. Exp. Ther. 271, 1574–1582.

    PubMed  CAS  Google Scholar 

  36. Tan, C. M., Brady, A. E., Nickols, H. H., Wang, Q., and Limbird, L. E. (2004) Membrane trafficking of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 44, 559–609.

    Article  PubMed  CAS  Google Scholar 

  37. Takeuchi, Y. and Fukunaga, K. (2003) Differential subcellular localization of two dopamine D2 receptor isoforms in transfected NG108-15 cells. J. Neurochem. 85, 1064–1074.

    Article  PubMed  CAS  Google Scholar 

  38. Hall, D. A. and Strange, P. G. (1997) Evidence that antipsychotic drugs are inverse agonists at D2 dopamine receptors. Br. J. Pharmacol. 121, 731–736.

    Article  PubMed  CAS  Google Scholar 

  39. Cobbold, C., Monaco, A. P., Sivaprasadarao, A., and Ponnambalam, S. (2003) Aberrant trafficking of transmembrane proteins in human disease. Trends Cell Biol. 13, 639–647.

    Article  PubMed  CAS  Google Scholar 

  40. Ulloa-Aguirre, A., Janovick, J. A., Brothers, S. P., and Conn, P. M. (2004) Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic 5, 821–837.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Tiberi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedaghat, K., Nantel, MF., Ginsberg, S. et al. Molecular characterization of dopamine D2 receptor isoforms tagged with green fluorescent protein. Mol Biotechnol 34, 1–14 (2006). https://doi.org/10.1385/MB:34:1:1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:34:1:1

Index Entries

Navigation