Skip to main content

Advertisement

Log in

Phenotypic studies on dopamine receptor subtype and associated signal transduction mutants: insights and challenges from 10 years at the psychopharmacology–molecular biology interface

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Mutants with targeted gene deletion (‘knockout’) or insertion (transgenic) of D1, D2, D3, D4 and D5 dopamine (DA) receptor subtypes are complemented by an increasing variety of double knockout and transgenic-‘knockout’ models, together with knockout of critical components of DA receptor signalling cascades such as Gαolf[Gγ7], adenylyl cyclase type 5, PKA [RIIβ] and DARPP-32. However, it is increasingly recognised that these molecular techniques have a number of inherent limitations. Furthermore, there are poorly understood methodological factors that contribute to inconsistent phenotypic findings between laboratories.

Objective

This review seeks to document the impact of DA receptor subtype and related transduction mutants on our understanding of the behavioural roles of these entities, primarily at the level of unconditioned psychomotor behaviour.

Methods

It includes ethologically based and orofacial movement studies in our own laboratories, since these are the only studies to systematically compare each of the D1, D2, D3, D4 and D5 receptor and DARPP-32 signal transduction ‘knockouts’.

Discussion

There is a particular emphasis on identifying methodological factors that might influence phenotypic effects and account for inconsistencies. The findings are offered empirically to (1) specify the extent of phenotypic diversity among individual DA receptor subtypes and transduction components and (2) indicate relationships between D1, D2, D3, D4 and D5 receptor subtype proteins, associated Gαi/Gαs/Gαolf[Gγ7]–adenylyl cyclase type 5–PKA [RIIβ]–DARPP-32 signalling cascades and behaviour. The findings are also offered heuristically as a base for such phenotypic comparisons at additional levels of behaviour so that a yet more complete phenotypic profile might emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Accili D, Fishburn CS, Drago J, Steiner H, Lachowicz JE, Park BH, Gauda EB, Lee EJ, Cool MH, Sibley DR, Gerfen CR, Westphal H, Fuchs S (1996) A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci U S A 93:1945–1949

    Article  PubMed  CAS  Google Scholar 

  • Adachi K, Hasegawa M, Fujita S, Lee J, Cools AR, Waddington JL, Koshikawa N (2003) Prefrontal, accumbal [shell] and ventral striatal mechanisms in jaw movements and non-cyclase-coupled dopamine D1-like receptors. Eur J Pharmacol 473:47–54

    Article  PubMed  CAS  Google Scholar 

  • Adams MR, Brandon EP, Chartoff EH, Idzerda RL, Dorsa DM, McKnight GS (1997) Loss of haloperidol induced gene expression and catalepsy in protein kinase A-deficient mice. Proc Natl Acad Sci U S A 94:12157–12161

    Article  PubMed  CAS  Google Scholar 

  • Aldridge JW, Berridge KC (1998) Coding of serial order by neostriatal neurons: a “natural action” approach to movement sequence. J Neurosci 18:2777–2787

    PubMed  CAS  Google Scholar 

  • Andringa G, Drukarch B, Leysen JE, Cools AR, Stoof JC (1999) The alleged dopamine D1 receptor agonist SKF 83959 is a dopamine D1 receptor antagonist in primate cells and interacts with other receptors. Eur J Pharmacol 364:33–41

    PubMed  CAS  Google Scholar 

  • Arnt J, Hyttel J, Sanchez C (1992) Partial and full dopamine D1 receptor agonists in mice and rats: relation between behavioural effects and stimulation of adenylate cyclase activity in vitro. Eur J Pharmacol 213:259–267

    PubMed  CAS  Google Scholar 

  • Avale ME, Falzone TL, Gelman DM, Low MJ, Grandy DK, Rubinstein M (2004) The dopamine D4 receptor is essential for hyperactivity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder. Mol Psychiatry 9:718–726

    PubMed  CAS  Google Scholar 

  • Baik JH, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377:424–428

    Article  PubMed  CAS  Google Scholar 

  • Balogh SA, McDowell CS, Stavnezer AJ, Denenberg VH (1999) A behavioral and neuroanatomical assessment of an inbred substrain of 129 mice with behavioral comparisons to C57BL/6J mice. Brain Res 836:38–48

    Article  PubMed  CAS  Google Scholar 

  • Baufreton J, Garret M, Rivera A, de la Calle A, Gonon F, Dufy B, Bioulac B, Taupignon A (2003) D5 (not D1) dopamine receptors potentiate burst-firing in neurons of the subthalamic nucleus by modulating an l-type calcium conductance. J Neurosci 23:816–825

    PubMed  CAS  Google Scholar 

  • Becker JB (1999) Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behav 64:803–812

    Article  PubMed  CAS  Google Scholar 

  • Belluscio L, Gold GH, Nemes A, Axel R (1998) Mice deficient in G(olf) are anosmic. Neuron 20:69–81

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Aldridge JW (2000) Super-stereotypy. I. Enhancement of a complex movement sequence by systemic dopamine D1 agonists. Synapse 37:194–204

    Article  PubMed  CAS  Google Scholar 

  • Betancur C, Lepee-Lorgeoux I, Cazillis M, Accili D, Fuchs S, Rostene W (2001) Neurotensin gene expression and behavioral responses following administration of psychostimulants and antipsychotic drugs in dopamine D(3) receptor deficient mice. Neuropsychopharmacology 24:170–182

    Article  PubMed  CAS  Google Scholar 

  • Blenau W, Erber J, Baumann A (1998) Characterization of a dopamine D1 receptor from Apis mellifera: cloning, functional expression, pharmacology, and mRNA localization in the brain. J Neurochem 70:15–23

    PubMed  CAS  Google Scholar 

  • Boulay D, Depoortere R, Perrault G, Borrelli E, Sanger DJ (1999a) Dopamine D2 receptor knock-out mice are insensitive to the hypolocomotor and hypothermic effects of dopamine D2/D3 receptor agonists. Neuropharmacology 38:1389–1396

    Article  PubMed  CAS  Google Scholar 

  • Boulay D, Depoortere R, Rostene W, Perrault G, Sanger DJ (1999b) Dopamine D3 receptor agonists produce similar decreases in body temperature and locomotor activity in D3 knock-out and wild-type mice. Neuropharmacology 38:555–565

    Article  PubMed  CAS  Google Scholar 

  • Boulay D, Depoortere R, Oblin A, Sanger DJ, Schoemaker H, Perrault G (2000) Haloperidol-induced catalepsy is absent in dopamine D(2), but maintained in dopamine D(3) receptor knock-out mice. Eur J Pharmacol 391:63–73

    Article  PubMed  CAS  Google Scholar 

  • Brandon EP, Logue SF, Adams MR, Qi M, Sullivan SP, Matsumoto AM, Dorsa DM, Wehner JM, McKnight GS, Idzerda RL (1998) Defective motor behavior and neural gene expression in RIIbeta-protein kinase A mutant mice. J Neurosci 18:3639–3649

    PubMed  CAS  Google Scholar 

  • Cardinaud B, Sugamori KS, Coudouel S, Vincent JD, Niznik HB, Vernier P (1997) Early emergence of three dopamine D1 receptor subtypes in vertebrates. Molecular phylogenetic, pharmacological, and functional criteria defining D1A, D1B, and D1C receptors in European eel Anguilla anguilla. J Biol Chem 272:2778–2787

    Article  PubMed  CAS  Google Scholar 

  • Carter DA (2004) Comprehensive strategies to study neuronal function in transgenic animal models. Biol Psychiatry 55:785–788

    Article  PubMed  CAS  Google Scholar 

  • Centonze D, Grande C, Saulle E, Martin AB, Gubellini P, Pavon N, Pisani A, Bernardi G, Moratalla R, Calabresi P (2003) Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J Neurosci 23:8506–8512

    PubMed  CAS  Google Scholar 

  • Chausmer AL, Elmer GI, Rubinstein M, Low MJ, Grandy DK, Katz JL (2002) Cocaine-induced locomotor activity and cocaine discrimination in dopamine D2 receptor mutant mice. Psychopharmacology 163:54–61

    Article  PubMed  CAS  Google Scholar 

  • Ciliax BJ, Nash N, Heilman C, Sunahara R, Hartney A, Tiberi M, Rye DB, Caron MG, Niznik HB, Levey AI (2000) Dopamine D(5) receptor immunolocalization in rat and monkey brain. Synapse 37:125–145

    Article  PubMed  CAS  Google Scholar 

  • Clifford JJ, Waddington JL (2000) Topographically based search for an “Ethogram” among a series of novel D(4) dopamine receptor agonists and antagonists. Neuropsychopharmacology 22:538–544

    Article  PubMed  CAS  Google Scholar 

  • Clifford JJ, Tighe O, Croke DT, Sibley DR, Drago J, Waddington JL (1998) Topographical evaluation of the phenotype of spontaneous behaviour in mice with targeted gene deletion of the D1A dopamine receptor: paradoxical elevation of grooming syntax. Neuropharmacology 37:1595–1602

    Article  PubMed  CAS  Google Scholar 

  • Clifford JJ, Tighe O, Croke DT, Kinsella A, Sibley DR, Drago J, Waddington JL (1999) Conservation of behavioural topography to dopamine D1-like receptor agonists in mutant mice lacking the D1A receptor implicates a D1-like receptor not coupled to adenylyl cyclase. Neuroscience 93:1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Clifford JJ, Usiello A, Vallone D, Kinsella A, Borrelli E, Waddington JL (2000) Topographical evaluation of behavioural phenotype in a line of mice with targeted gene deletion of the D2 dopamine receptor. Neuropharmacology 39:382–390

    Article  PubMed  CAS  Google Scholar 

  • Clifford JJ, Kinsella A, Tighe O, Rubinstein M, Grandy DK, Low MJ, Croke DT, Waddington JL (2001) Comparative, topographically-based evaluation of behavioural phenotype and specification of D(1)-like:D(2) interactions in a line of incipient congenic mice with D(2) dopamine receptor ‘knockout’. Neuropsychopharmacology 25:527–536

    Article  PubMed  CAS  Google Scholar 

  • Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson's disease: the role of the prefrontal cortex revealed by PET. Brain 125:584–594

    Article  PubMed  Google Scholar 

  • Corvol JC, Studler JM, Schonn JS, Girault JA, Herve D (2001) Galpha(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem 76:1585–1588

    Article  PubMed  CAS  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672

    PubMed  CAS  Google Scholar 

  • Crawford CA, Drago J, Watson JB, Levine MS (1997) Effects of repeated amphetamine treatment on the locomotor activity of the dopamine D1A-deficient mouse. NeuroReport 8:2523–2527

    PubMed  CAS  Google Scholar 

  • Crawley JN (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835:18–26

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (2000) Designer mice: what's wrong with my mouse? Behavioral phenotyping of transgenic and knockout mice. Wiley-Liss, New York, pp 1–7

    Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132:107–124

    Article  PubMed  CAS  Google Scholar 

  • Cromwell HC, Berridge KC (1996) Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax. J Neurosci 16:3444–3458

    PubMed  CAS  Google Scholar 

  • Cromwell HC, Berridge KC, Drago J, Levine MS (1998) Action sequencing is impaired in D1A-deficient mutant mice. Eur J Neurosci 10:2426–2432

    PubMed  CAS  Google Scholar 

  • Crusio WE (2004) Flanking gene and genetic background problems in genetically manipulated mice. Biol Psychiatry 56:381–385

    Article  PubMed  CAS  Google Scholar 

  • Daly SA, Waddington JL (1993) Behavioural evidence for “D-1-like” dopamine receptor subtypes in rat brain using the new isochroman agonist A 68930 and isoquinoline antagonist BW 737C. Psychopharmacology 113:45–50

    PubMed  CAS  Google Scholar 

  • DeNinno MP, Schoenleber R, MacKenzie R, Britton DR, Asin KE, Briggs C, Trugman JM, Ackerman M, Artman L, Bednarz L et al (1991) A68930: a potent agonist selective for the dopamine D1 receptor. Eur J Pharmacol 199:209–219

    PubMed  CAS  Google Scholar 

  • Deutch AY, Roth RH (1990) The determinants of stress-induced activation of the prefrontal cortical dopamine system. Prog Brain Res 85:367–402

    Article  PubMed  CAS  Google Scholar 

  • Deveney AM, Waddington JL (1995) Pharmacological characterization of behavioural responses to SK&F 83959 in relation to ‘D1-like’ dopamine receptors not linked to adenylyl cyclase. Br J Pharmacol 116:2120–2126

    PubMed  CAS  Google Scholar 

  • Diaz-Veliz G, Baeza R, Benavente F, Dussaubat N, Mora S (1994) Influence of the estrous cycle and estradiol on the behavioral effects of amphetamine and apomorphine in rats. Pharmacol Biochem Behav 49:819–825

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G (2002) Handbook of experimental physiology: dopamine in the CNS 1. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Douhet P, Bertaina V, Durkin T, Calas A, Destrade C (1997) Sex-linked behavioural differences in mice expressing a human insulin transgene in the medial habenula. Behav Brain Res 89:259–266

    Article  PubMed  CAS  Google Scholar 

  • Dracheva S, Haroutunian V (2001) Locomotor behavior of dopamine D1 receptor transgenic/D2 receptor deficient hybrid mice. Brain Res 905:142–151

    Article  PubMed  CAS  Google Scholar 

  • Dracheva S, Xu M, Kelley KA, Haroutunian V, Holstein GR, Haun S, Silverstein JH, Sealfon SC (1999) Paradoxical locomotor behavior of dopamine D1 receptor transgenic mice. Exp Neurol 157:169–179

    Article  PubMed  CAS  Google Scholar 

  • Drago J, Gerfen CR, Lachowicz JE, Steiner H, Hollon TR, Love PE, Ooi GT, Grinberg A, Lee EJ, Huang SP et al (1994) Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc Natl Acad Sci U S A 91:12564–12568

    PubMed  CAS  Google Scholar 

  • Drago J, Gerfen CR, Westphal H, Steiner H (1996) D1 dopamine receptor-deficient mouse: cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 74:813–823

    Article  PubMed  CAS  Google Scholar 

  • Dulawa SC, Grandy DK, Low MJ, Paulus MP, Geyer MA (1999) Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli. J Neurosci 19:9550–9556

    PubMed  CAS  Google Scholar 

  • Elliot EE, Sibley DR, Katz JL (2003) Locomotor and discriminative-stimulus effects of cocaine in dopamine D5 receptor knockout mice. Psychopharmacology 169:161–168

    Article  PubMed  CAS  Google Scholar 

  • Falzone TL, Gelman DM, Young JI, Grandy DK, Low MJ, Rubinstein M (2002) Absence of dopamine D4 receptors results in enhanced reactivity to unconditioned, but not conditioned, fear. Eur J Neurosci 15:158–164

    PubMed  Google Scholar 

  • Feng G, Hannan F, Reale V, Hon YY, Kousky CT, Evans PD, Hall LM (1996) Cloning and functional characterization of a novel dopamine receptor from Drosophila melanogaster. J Neurosci 16:3925–3933

    PubMed  CAS  Google Scholar 

  • Festing MF, Simpson EM, Davisson MT, Mobraaten LE (1999) Revised nomenclature for strain 129 mice. Mamm Genome 10:836

    Article  PubMed  CAS  Google Scholar 

  • Fetsko LA, Xu R, Wang Y (2003) Alterations in D1/D2 synergism may account for enhanced stereotypy and reduced climbing in mice lacking dopamine D2L receptor. Brain Res 967:191–200

    Article  PubMed  CAS  Google Scholar 

  • Fienberg AA, Greengard P (2000) The DARPP-32 knockout mouse. Brain Res Rev 31:313–319

    Article  PubMed  CAS  Google Scholar 

  • Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, Cheramy A, O'Callaghan JP, Miller DB, Cole DG, Corbett R, Haile CN, Cooper DC, Onn SP, Grace AA, Ouimet CC, White FJ, Hyman SE, Surmeier DJ, Girault J, Nestler EJ, Greengard P (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281:838–842

    PubMed  CAS  Google Scholar 

  • Fowler SC, Zarcone TJ, Vorontsova E, Chen R (2002) Motor and associative deficits in D2 dopamine receptor knockout mice. Int J Dev Neurosci 20:309–321

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R (1999a) Ethological approaches in behavioral neurogenetic research. In: Crusio WE, Gerlai R (eds) Techniques in the behavioral and neural sciences. Elsevier, Amsterdam, pp 627–635

    Google Scholar 

  • Gerlai R (1999b) Targeting genes associated with mammalian behavior. In: Crusio WE, Gerlai R (eds) Techniques in the behavioral and neural sciences. Elsevier, Amsterdam, pp 381–392

    Google Scholar 

  • Gingrich JA, Hen R (2000) The broken mouse: the role of development, plasticity and environment in the interpretation of phenotypic changes in knockout mice. Curr Opin Neurobiol 10:146–152

    Article  PubMed  CAS  Google Scholar 

  • Glickstein SB, Schmauss C (2001) Dopamine receptor functions: lessons from knockout mice. Pharmacol Ther 91:63–83

    Article  PubMed  CAS  Google Scholar 

  • Gold LH (1999) Hierarchical strategy for phenotypic analysis in mice. Psychopharmacology 147:2–4

    Article  PubMed  CAS  Google Scholar 

  • Greengard P (2001) The neurobiology of dopamine signaling. Biosci Rep 21:247–269

    Article  PubMed  CAS  Google Scholar 

  • Greengard P, Allen PB, Nairn AC (1999) Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23:435–447

    Article  PubMed  CAS  Google Scholar 

  • Hatcher JP, Jones DN, Rogers DC, Hatcher PD, Reavill C, Hagan JJ, Hunter AJ (2001) Development of SHIRPA to characterise the phenotype of gene-targeted mice. Behav Brain Res 125:43–47

    Article  PubMed  CAS  Google Scholar 

  • Herve D, Le Moine C, Corvol JC, Belluscio L, Ledent C, Fienberg AA, Jaber M, Studler JM, Girault JA (2001) Galpha(olf) levels are regulated by receptor usage and control dopamine and adenosine action in the striatum. J Neurosci 21:4390–4399

    PubMed  CAS  Google Scholar 

  • Hirano J, Archer SN, Djamgoz MB (1998) Dopamine receptor subtypes expressed in vertebrate (carp and eel) retinae: cloning, sequencing and comparison of five D1-like and three D2-like receptors. Recept Channels 5:387–404

    PubMed  CAS  Google Scholar 

  • Hollon TR, Bek MJ, Lachowicz JE, Ariano MA, Mezey E, Ramachandran R, Wersinger SR, Soares-da-Silva P, Liu ZF, Grinberg A, Drago J, Young WS III, Westphal H, Jose PA, Sibley DR (2002) Mice lacking D5 dopamine receptors have increased sympathetic tone and are hypertensive. J Neurosci 22:10801–10810

    PubMed  CAS  Google Scholar 

  • Holmes A, Hollon TR, Gleason TC, Liu Z, Dreiling J, Sibley DR, Crawley JN (2001) Behavioral characterization of dopamine D5 receptor null mutant mice. Behav Neurosci 115:1129–1144

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Wrenn CC, Harris AP, Thayer KE, Crawley JN (2002) Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. Genes Brain Behav 1:55–69

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Lachowicz JE, Sibley DR (2004) Phenotypic analysis of dopamine receptor knockout mice; recent insights into the functional specificity of dopamine receptor subtypes. Neuropharmacology 47:1117–1134

    PubMed  CAS  Google Scholar 

  • Homanics GE, Quinlan JJ, Firestone LL (1999) Pharmacologic and behavioral responses of inbred C57BL/6J and strain 129/SvJ mouse lines. Pharmacol Biochem Behav 63:21–26

    Article  PubMed  CAS  Google Scholar 

  • Jin LQ, Goswami S, Cai G, Zhen X, Friedman E (2003) SKF83959 selectively regulates phosphatidylinositol-linked D1 dopamine receptors in rat brain. J Neurochem 85:378–386

    PubMed  CAS  Google Scholar 

  • Jung MY, Skryabin BV, Arai M, Abbondanzo S, Fu D, Brosius J, Robakis NK, Polites HG, Pintar JE, Schmauss C (1999) Potentiation of the D2 mutant motor phenotype in mice lacking dopamine D2 and D3 receptors. Neuroscience 91:911–924

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1995) Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res 675:325–328

    PubMed  CAS  Google Scholar 

  • Kapsimali M, Vidal B, Gonzalez A, Dufour S, Vernier P (2000) Distribution of the mRNA encoding the four dopamine D(1) receptor subtypes in the brain of the European eel (Anguilla anguilla): comparative approach to the function of D(1) receptors in vertebrates. J Comp Neurol 419:320–343

    Article  PubMed  CAS  Google Scholar 

  • Karasinska JM, George SR, El-Ghundi M, Fletcher PJ, O'Dowd BF (2000) Modification of dopamine D(1) receptor knockout phenotype in mice lacking both dopamine D(1) and D(3) receptors. Eur J Pharmacol 399:171–181

    Article  PubMed  CAS  Google Scholar 

  • Karper PE, De la Rosa H, Newman ER, Krall CM, Nazarian A, McDougall SA, Crawford CA (2002) Role of D1-like receptors in amphetamine-induced behavioral sensitization: a study using D1A receptor knockout mice. Psychopharmacology 159:407–414

    Article  PubMed  CAS  Google Scholar 

  • Katz JL, Chausmer AL, Elmer GI, Rubinstein M, Low MJ, Grandy DK (2003) Cocaine-induced locomotor activity and cocaine discrimination in dopamine D4 receptor mutant mice. Psychopharmacology 170:108–114

    Article  PubMed  CAS  Google Scholar 

  • Kazandjian A, Spyraki C, Sfikakis A, Varonos DD (1987) Apomorphine-induced behaviour during the oestrous cycle of the rat. Neuropharmacology 26:1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  PubMed  CAS  Google Scholar 

  • Kelly MA, Rubinstein M, Phillips TJ, Lessov CN, Burkhart-Kasch S, Zhang G, Bunzow JR, Fang Y, Gerhardt GA, Grandy DK, Low MJ (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci 18:3470–3479

    PubMed  CAS  Google Scholar 

  • Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, de la Calle A (2000) Dopamine D5 receptors of rat and human brain. Neuroscience 100:689–699

    Article  PubMed  CAS  Google Scholar 

  • Kido Y, Philippe N, Schaffer AA, Accili D (2000) Genetic modifiers of the insulin resistance phenotype in mice. Diabetes 49:589–596

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Iaccarino C, Saiardi A, Heidt V, Bozzi Y, Picetti R, Vitale C, Westphal H, Drago J, Borrelli E (2004) Simultaneous absence of dopamine D1 and D2 receptor-mediated signaling is lethal in mice. Proc Natl Acad Sci U S A 101:11465–11470

    Article  PubMed  CAS  Google Scholar 

  • Kruzich PJ, Suchland KL, Grandy DK (2004) Dopamine D4 receptor-deficient mice, congenic on the C57BL/6J background, are hypersensitive to amphetamine. Synapse 53:131–139

    Article  PubMed  CAS  Google Scholar 

  • Lariviere WR, Chesler EJ, Mogil JS (2001) Transgenic studies of pain and analgesia: mutation or background genotype? J Pharmacol Exp Ther 297:467–473

    PubMed  CAS  Google Scholar 

  • Lee SH, Yajima S, Mouradian MM (1999) Neural cell line-specific regulatory DNA cassettes harboring the murine D1A dopamine receptor promoter. Neurosci Res 34:225–234

    Article  PubMed  CAS  Google Scholar 

  • Lee KW, Hong JH, Choi IY, Che Y, Lee JK, Yang SD, Song CW, Kang HS, Lee JH, Noh JS, Shin HS, Han PL (2002) Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J Neurosci 22:7931–7940

    PubMed  CAS  Google Scholar 

  • Lezcano N, Mrzljak L, Eubanks S, Levenson R, Goldman-Rakic P, Bergson C (2000) Dual signaling regulated by Calcyon, a D1 dopamine receptor interacting protein. Science 287:1660–1664

    PubMed  CAS  Google Scholar 

  • Makihara Y, Yamamoto H, Grandy D, Low M, Rubinstein M, Sibley D, Waddington J, Tomiyama K, Koshikawa N (2004a) The roles of dopamine receptor subtypes on movements of orofacial region: analysis using D4, D5 knockout mice. Folia Pharmacol Japon 122:25P

    Google Scholar 

  • Makihara Y, Yamamoto H, Inoue M, Tomiyama K, Koshikawa N, Waddington JL (2004b) Topographical effects of D1-like dopamine receptor agonists on orofacial movements in mice and their differential regulation via oppositional versus synergistic D1-like:D2-like interactions: cautionary observations on SK&F 82958 as an anomalous agent. J Psychopharmacol 18:484–495

    Article  PubMed  CAS  Google Scholar 

  • Marchlewska-Koj A, Pochron E, Galewicz-Sojecka A, Galas J (1994) Suppression of estrus in female mice by the presence of conspecifics or by foot shock. Physiol Behav 55:317–321

    Article  PubMed  CAS  Google Scholar 

  • McNamara FN, Clifford JJ, Tighe O, Kinsella A, Drago J, Fuchs S, Croke DT, Waddington JL (2002) Phenotypic, ethologically based resolution of spontaneous and D(2)-like vs D(1)-like agonist-induced behavioural topography in mice with congenic D(3) dopamine receptor “knockout”. Synapse 46:19–31

    Article  PubMed  CAS  Google Scholar 

  • McNamara FN, Clifford JJ, Tighe O, Kinsella A, Drago J, Croke DT, Waddington JL (2003) Congenic D1A dopamine receptor mutants: ethologically based resolution of behavioural topography indicates genetic background as a determinant of knockout phenotype. Neuropsychopharmacology 28:86–99

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Luehmann M, Thompson JF, Berridge KC, Aldridge JW (2002) Substantia nigra pars reticulata neurons code initiation of a serial pattern: implications for natural action sequences and sequential disorders. Eur J Neurosci 16:1599–1608

    PubMed  Google Scholar 

  • Miner LL, Drago J, Chamberlain PM, Donovan D, Uhl GR (1995) Retained cocaine conditioned place preference in D1 receptor deficient mice. NeuroReport 6:2314–2316

    PubMed  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Molloy AG, Waddington JL (1984) Dopaminergic behaviour stereospecific promoted by the D1 agonist R-SK & F 38393 and selectively blocked by the D1 antagonist SCH 23390. Psychopharmacology 82:409–410

    Article  PubMed  CAS  Google Scholar 

  • Montague DM, Striplin CD, Overcash JS, Drago J, Lawler CP, Mailman RB (2001) Quantification of D1B(D5) receptors in dopamine D1A receptor-deficient mice. Synapse 39:319–322

    Article  PubMed  CAS  Google Scholar 

  • Montkowski A, Poettig M, Mederer A, Holsboer F (1997) Behavioural performance in three substrains of mouse strain 129. Brain Res 762:12–18

    Article  PubMed  CAS  Google Scholar 

  • Moratalla R, Xu M, Tonegawa S, Graybiel AM (1996) Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc Natl Acad Sci U S A 93:14928–14933

    Article  PubMed  CAS  Google Scholar 

  • Morice E, Denis C, Giros B, Nosten-Bertrand M (2004) Phenotypic expression of the targeted null-mutation in the dopamine transporter gene varies as a function of the genetic background. Eur J Neurosci 20:120–126

    PubMed  Google Scholar 

  • Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381:245–248

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JH (2001) Modifier genes in mice and humans. Nat Rev Genet 2:165–174

    Article  PubMed  CAS  Google Scholar 

  • Nally RE, McNamara FN, Clifford JJ, Kinsella A, Tighe O, Croke DT, Fienberg AA, Greengard P, Waddington JL (2003) Topographical assessment of ethological and dopamine receptor agonist-induced behavioral phenotype in mutants with congenic DARPP-32 ‘knockout’. Neuropsychopharmacology 28:2055–2063

    PubMed  CAS  Google Scholar 

  • Nally RE, Kinsella A, Tighe O, Croke DT, Fienberg AA, Greengard P, Waddington JL (2004) Ethologically based resolution of D2-like dopamine receptor agonist-versus antagonist-induced behavioral topography in dopamine- and adenosine 3′,5′-monophosphate-regulated phosphoprotein of 32 kDa “knockout” mutants congenic on the C57BL/6 genetic background. J Pharmacol Exp Ther 310:1281–1287

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Mizuo K, Mizoguchi H, Sakata M, Tseng LF, Suzuki T (2003) Molecular evidence for the functional role of dopamine D3 receptor in the morphine-induced rewarding effect and hyperlocomotion. J Neurosci 23:1006–1012

    PubMed  CAS  Google Scholar 

  • Niznik HB, Sugamori KS, Clifford JJ, Waddington JL (2002) D1-like dopamine receptors: molecular biology and pharmacology. In: Di Chiara G (ed) Handbook of experimental pharmacology: dopamine in the CNS 1. Springer, Berlin Heidelberg New York, pp 121–158

    Google Scholar 

  • Oak JN, Oldenhof J, Van Tol HH (2000) The dopamine D(4) receptor: one decade of research. Eur J Pharmacol 405:303–327

    PubMed  CAS  Google Scholar 

  • O'Sullivan GJ, Croke DT, Tighe O, Kinsella A, Grandy DK, Low MJ, Rubinstein M, Sibley DR, Waddington JL (2004a) Topographical evaluation of spontaneous and agonist-induced behaviour in mutants with congenic dopamine D4 receptor knockout. Eur Neuropsychopharmacol 14:S41

    Google Scholar 

  • O'Sullivan GJ, Roth BL, Kinsella A, Waddington JL (2004b) SK&F 83822 distinguishes adenylyl cyclase from phospholipase C-coupled dopamine D1-like receptors: behavioural topography. Eur J Pharmacol 486:273–280

    Article  PubMed  CAS  Google Scholar 

  • O'Sullivan GJ, Kinsella A, Sibley DR, Tighe O, Croke DT, Waddington JL (2005) Ethological resolution of behavioural topography and D(1)-like versus D(2)-like agonist responses in congenic D(5) dopamine receptor mutants: Identification of D(5):D(2)-like interactions. Synapse 55:201–211

    Article  PubMed  CAS  Google Scholar 

  • Panchalingam S, Undie AS (2000) Optimized binding of [35S]GTPgammaS to Gq-like proteins stimulated with dopamine D1-like receptor agonists. Neurochem Res 25:759–767

    Article  PubMed  CAS  Google Scholar 

  • Panchalingam S, Undie AS (2001) SKF83959 exhibits biochemical agonism by stimulating [(35)S]GTP gamma S binding and phosphoinositide hydrolysis in rat and monkey brain. Neuropharmacology 40:826–837

    Article  PubMed  CAS  Google Scholar 

  • Paulus MP, Dulawa SC, Ralph RJ, Mark AG (1999) Behavioral organization is independent of locomotor activity in 129 and C57 mouse strains. Brain Res 835:27–36

    Article  PubMed  CAS  Google Scholar 

  • Phillips TJ, Hen R, Crabbe JC (1999) Complications associated with genetic background effects in research using knockout mice. Psychopharmacology 147:5–7

    Article  PubMed  CAS  Google Scholar 

  • Pritchard LM, Logue AD, Hayes S, Welge JA, Xu M, Zhang J, Berger SP, Richtand NM (2003) 7-OH-DPAT and PD 128907 selectively activate the D3 dopamine receptor in a novel environment. Neuropsychopharmacology 28:100–107

    Article  PubMed  CAS  Google Scholar 

  • Reale V, Hannan F, Hall LM, Evans PD (1997) Agonist-specific coupling of a cloned Drosophila melanogaster D1-like dopamine receptor to multiple second messenger pathways by synthetic agonists. J Neurosci 17:6545–6553

    PubMed  CAS  Google Scholar 

  • Reed TM, Repaske DR, Snyder GL, Greengard P, Vorhees CV (2002) Phosphodiesterase 1B knock-out mice exhibit exaggerated locomotor hyperactivity and DARPP-32 phosphorylation in response to dopamine agonists and display impaired spatial learning. J Neurosci 22:5188–5197

    PubMed  CAS  Google Scholar 

  • Rivera A, Alberti I, Martin AB, Narvaez JA, De La Calle A, Moratalla R (2002a) Molecular phenotype of rat striatal neurons expressing the dopamine D5 receptor subtype. Eur J Neurosci 16:2049–2058

    PubMed  Google Scholar 

  • Rivera A, Cuellar B, Giron FJ, Grandy DK, de la Calle A, Moratalla R (2002b) Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J Neurochem 80:219–229

    Article  PubMed  CAS  Google Scholar 

  • Rivera A, Trias S, Penafiel A, Angel Narvaez J, Diaz-Cabiale Z, Moratalla R, de la Calle A (2003) Expression of D4 dopamine receptors in striatonigral and striatopallidal neurons in the rat striatum. Brain Res 989:35–41

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Boullier E, Chatzimichalaki P, Cooper GD, Shorten A (2002) Contrasting phenotypes of C57BL/6JOlaHsd, 129S2/SvHsd and 129/SvEv mice in two exploration-based tests of anxiety-related behaviour. Physiol Behav 77:301–310

    Article  PubMed  CAS  Google Scholar 

  • Rogers DC, Jones DN, Nelson PR, Jones CM, Quilter CA, Robinson TL, Hagan JJ (1999) Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains. Behav Brain Res 105:207–217

    Article  PubMed  CAS  Google Scholar 

  • Rosengarten H, Friedhoff AJ (1998) A phosphoinositide-linked dopamine D1 receptor mediates repetitive jaw movements in rats. Biol Psychiatry 44:1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein M, Cepeda C, Hurst RS, Flores-Hernandez J, Ariano MA, Falzone TL, Kozell LB, Meshul CK, Bunzow JR, Low MJ, Levine MS, Grandy DK (2001) Dopamine D4 receptor-deficient mice display cortical hyperexcitability. J Neurosci 21:3756–3763

    PubMed  CAS  Google Scholar 

  • Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L, Mayford M, Lockhart DJ, Barlow C (2000) Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci U S A 97:11038–11043

    Article  PubMed  CAS  Google Scholar 

  • Schinka JA, Letsch EA, Crawford FC (2002) DRD4 and novelty seeking: results of meta-analyses. Am J Med Genet 114:643–648

    Article  PubMed  CAS  Google Scholar 

  • Schwindinger WF, Betz KS, Giger KE, Sabol A, Bronson SK, Robishaw JD (2003) Loss of G protein gamma 7 alters behavior and reduces striatal alpha(olf) level and cAMP production. J Biol Chem 278:6575–6579

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Nam D, Ulpian C, Liu IS, Tallerico T (2000) New dopamine receptor, D2(Longer), with unique TG splice site, in human brain. Mol Brain Res 76:132–141

    Article  PubMed  CAS  Google Scholar 

  • Seong E, Saunders TL, Stewart CL, Burmeister M (2004) To knockout in 129 or in C57BL/6: that is the question. Trends Genet 20:59–62

    Article  PubMed  CAS  Google Scholar 

  • Sibley DR (1999) New insights into dopaminergic receptor function using antisense and genetically altered animals. Annu Rev Pharmacol Toxicol 39:313–341

    Article  PubMed  CAS  Google Scholar 

  • Sidhu A, Laruelle M, Vernier P (2003) Dopamine receptors and transporters: function, imaging and clinical application. Marcel Dekker, New York

    Google Scholar 

  • Smith DR, Striplin CD, Geller AM, Mailman RB, Drago J, Lawler CP, Gallagher M (1998) Behavioural assessment of mice lacking D1A dopamine receptors. Neuroscience 86:135–146

    Article  PubMed  CAS  Google Scholar 

  • Starr MS (1996) The role of dopamine in epilepsy. Synapse 22:159–194

    Article  PubMed  CAS  Google Scholar 

  • Steiner M, Katz RJ, Carroll BJ (1980) Behavioral effects of dopamine agonists across the estrous cycle in rats. Psychopharmacology 71:147–151

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Fuchs S, Accili D (1997) D3 dopamine receptor-deficient mouse: evidence for reduced anxiety. Physiol Behav 63:137–141

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson P, Le Moine C (2002) Dopamine D1/5 receptor stimulation induces c-fos expression in the subthalamic nucleus: possible involvement of local D5 receptors. Eur J Neurosci 15:133–142

    PubMed  Google Scholar 

  • Svenningsson P, Lindskog M, Ledent C, Parmentier M, Greengard P, Fredholm BB, Fisone G (2000) Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. Proc Natl Acad Sci U S A 97:1856–1860

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson P, Tzavara ET, Carruthers R, Rachleff I, Wattler S, Nehls M, McKinzie DL, Fienberg AA, Nomikos GG, Greengard P (2003) Diverse psychotomimetics act through a common signaling pathway. Science 302:1412–1415

    PubMed  CAS  Google Scholar 

  • Takada M, Tokuno H, Nambu A, Inase M (1998) Corticostriatal projections from the somatic motor areas of the frontal cortex in the macaque monkey: segregation versus overlap of input zones from the primary motor cortex, the supplementary motor area, and the premotor cortex. Exp Brain Res 120:114–128

    Article  PubMed  CAS  Google Scholar 

  • Tallerico T, Novak G, Liu IS, Ulpian C, Seeman P (2001) Schizophrenia: elevated mRNA for dopamine D2(Longer) receptors in frontal cortex. Mol Brain Res 87:160–165

    Article  PubMed  CAS  Google Scholar 

  • Tan S, Hermann B, Borrelli E (2003) Dopaminergic mouse mutants: investigating the roles of the different dopamine receptor subtypes and the dopamine transporter. Int Rev Neurobiol 54:145–197

    Article  PubMed  CAS  Google Scholar 

  • Tarazi FI, Zhang K, Baldessarini RJ (2004) Dopamine D4 receptors: beyond schizophrenia. J Recept Signal Transduct Res 24:131–147

    Article  PubMed  CAS  Google Scholar 

  • Tecott LH, Wehner JM (2001) Mouse molecular genetic technologies: promise for psychiatric research. Arch Gen Psychiatry 58:995–1004

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama K, McNamara FN, Clifford JJ, Kinsella A, Koshikawa N, Waddington JL (2001) Topographical assessment and pharmacological characterization of orofacial movements in mice: dopamine D(1)-like vs. D(2)-like receptor regulation. Eur J Pharmacol 418:47–54

    PubMed  CAS  Google Scholar 

  • Tomiyama K, McNamara FN, Clifford JJ, Kinsella A, Drago J, Tighe O, Croke DT, Koshikawa N, Waddington JL (2002) Phenotypic resolution of spontaneous and D(1)-like agonist-induced orofacial movement topographies in congenic dopamine D(1A) receptor ‘knockout’ mice. Neuropharmacology 42:644–652

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama K, Nally R, McNamara F, Clifford J, Kinsella A, Tighe O, Croke DT, Fienberg A, Greengard P, Koshikawa N, Waddington J (2003) The study of the active isomers of SKF 83959 and the role of DARPP-32 on the induction of orofacial movements of the mouse. Jpn J Neuropharmacol 22:362

    Google Scholar 

  • Tomiyama K, McNamara FN, Clifford JJ, Kinsella A, Drago J, Fuchs S, Grandy DK, Low MJ, Rubinstein M, Tighe O, Croke DT, Koshikawa N, Waddington JL (2004) Comparative phenotypic resolution of spontaneous, D2-like and D1-like agonist-induced orofacial movement topographies in congenic mutants with dopamine D2 vs. D3 receptor “knockout”. Synapse 51:71–81

    Article  PubMed  CAS  Google Scholar 

  • Tran AH, Tamura R, Uwano T, Kobayashi T, Katsuki M, Matsumoto G, Ono T (2002) Altered accumbens neural response to prediction of reward associated with place in dopamine D2 receptor knockout mice. Proc Natl Acad Sci U S A 99:8986–8991

    Article  PubMed  CAS  Google Scholar 

  • Undie AS, Friedman E (1990) Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J Pharmacol Exp Ther 253:987–992

    PubMed  CAS  Google Scholar 

  • Undie AS, Friedman E (1994) Inhibition of dopamine agonist-induced phosphoinositide hydrolysis by concomitant stimulation of cyclic AMP formation in brain slices. J Neurochem 63:222–230

    Article  PubMed  CAS  Google Scholar 

  • Undie AS, Weinstock J, Sarau HM, Friedman E (1994) Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain. J Neurochem 62:2045–2048

    Article  PubMed  CAS  Google Scholar 

  • Undie AS, Berki AC, Beardsley K (2000) Dopaminergic behaviors and signal transduction mediated through adenylate cyclase and phospholipase C pathways. Neuropharmacology 39:75–87

    Article  PubMed  CAS  Google Scholar 

  • Usiello A, Baik JH, Rouge-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borrelli E (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408:199–203

    Article  PubMed  CAS  Google Scholar 

  • Vallone D, Pignatelli M, Grammatikopoulos G, Ruocco L, Bozzi Y, Westphal H, Borrelli E, Sadile AG (2002) Activity, non-selective attention and emotionality in dopamine D2/D3 receptor knock-out mice. Behav Brain Res 130:141–148

    Article  PubMed  CAS  Google Scholar 

  • Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    Article  PubMed  Google Scholar 

  • Viggiano D, Ruocco LA, Sadile AG (2003) Dopamine phenotype and behaviour in animal models: in relation to attention deficit hyperactivity disorder. Neurosci Biobehav Rev 27:623–637

    Article  PubMed  CAS  Google Scholar 

  • Waddington JL (1990) Spontaneous orofacial movements induced in rodents by very long-term neuroleptic drug administration: phenomenology, pathophysiology and putative relationship to tardive dyskinesia. Psychopharmacology 101:431–447

    PubMed  CAS  Google Scholar 

  • Waddington JL, O'Boyle KM (1989) Drugs acting on brain dopamine receptors: a conceptual re-evaluation five years after the first selective D-1 antagonist. Pharmacol Ther 43:1–52

    Article  PubMed  CAS  Google Scholar 

  • Waddington JL, Daly SA, McCauley PG, O'Boyle KM (1994) Levels of functional interaction between D1-like and D2-like dopamine receptor systems. In: Niznik HB (ed) Dopamine receptors and transporters: pharmacology, structure and function. Marcel Dekker, New York, pp 511–537

    Google Scholar 

  • Waddington JL, Daly SA, Downes RP, Deveney AM, McCauley PG, O'Boyle KM (1995) Behavioural pharmacology of ‘D-1-like’ dopamine receptors: further subtyping, new pharmacological probes and interactions with ‘D-2-like’ receptors. Prog Neuro-Psychopharmacol Biol Psychiatry 19:811–831

    Article  CAS  Google Scholar 

  • Waddington JL, Deveney AM, Clifford JJ, Tighe O, Croke DT, Sibley DR, Drago J (1998) D1-like dopamine receptors: regulation of psychomotor behaviour, D1-like:D2-like interactions and effects of targeted gene deletion. In: Jenner P, Demirdamar R (eds) Dopamine receptor subtypes. IOC Press, Amsterdam, pp 45–64

    Google Scholar 

  • Waddington JL, Clifford JJ, McNamara FN, Tomiyama K, Koshikawa N, Croke DT (2001) The psychopharmacology–molecular biology interface: exploring the behavioural roles of dopamine receptor subtypes using targeted gene deletion (‘knockouts’). Prog Neuro-Psychopharmacol Biol Psychiatry 25:925–964

    Article  CAS  Google Scholar 

  • Walther T, Voigt JP, Fink H, Bader M (2000) Sex specific behavioural alterations in Mas-deficient mice. Behav Brain Res 107:105–109

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Xu R, Sasaoka T, Tonegawa S, Kung MP, Sankoorikal EB (2000) Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. J Neurosci 20:8305–8314

    PubMed  CAS  Google Scholar 

  • Wong JY, Clifford JJ, Massalas JS, Kinsella JS, Waddington JL, Drago J (2003) Essential conservation of D1 mutant phenotype at the level of individual topographies of behavior in mice lacking both D1 and D3 dopamine receptors. Psychopharmacology 167:167–173

    PubMed  CAS  Google Scholar 

  • Xu M, Hu XT, Cooper DC, Moratalla R, Graybiel AM, White FJ, Tonegawa S (1994a) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79:945–955

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF, Graybiel AM, Tonegawa S (1994b) Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79:729–742

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Koeltzow TE, Santiago GT, Moratalla R, Cooper DC, Hu XT, White NM, Graybiel AM, White FJ, Tonegawa S (1997) Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron 19:837–848

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Koeltzow TE, Cooper DC, Tonegawa S, White FJ (1999) Dopamine D3 receptor mutant and wild-type mice exhibit identical responses to putative D3 receptor-selective agonists and antagonists. Synapse 31:210–215

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Guo Y, Vorhees CV, Zhang J (2000) Behavioral responses to cocaine and amphetamine administration in mice lacking the dopamine D1 receptor. Brain Res 852:198–207

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Hranilovic D, Fetsko LA, Bucan M, Wang Y (2002) Dopamine D2S and D2L receptors may differentially contribute to the actions of antipsychotic and psychotic agents in mice. Mol Psychiatry 7:1075–1082

    Article  PubMed  CAS  Google Scholar 

  • Yarkov AV, Hanger D, Reploge M, Joyce JN (2003) Behavioral effects of dopamine agonists and antagonists in MPTP-lesioned D3 receptor knockout mice. Pharmacol Biochem Behav 76:551–562

    Article  PubMed  CAS  Google Scholar 

  • Zarrindast MR, Bayat A, Shafaghi B (1993) Involvement of dopaminergic receptor subtypes in Straub tail behaviour in mice. Gen Pharmacol 24:127–130

    PubMed  CAS  Google Scholar 

  • Zhang GX, Sasamoto K (1990) Projections of two separate cortical areas for rhythmical jaw movements in the rat. Brain Res Bull 24:221–230

    Article  PubMed  CAS  Google Scholar 

  • Zhuang X, Belluscio L, Hen R (2000) G(olf)alpha mediates dopamine D1 receptor signaling. J Neurosci 20:RC91

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors' studies would be impossible without the generous collaboration of our colleagues in molecular biology who have kindly made their mutants available to us; we are indebted to: Emiliana Borrelli, John Drago, Allen Fienberg, Sara Fuchs, David Grandy, Paul Greengard, Malcolm Low, Marcelo Rubinstein and David Sibley. Additionally, we thank Jerry Clifford, Fergal McNamara ,Ashling Mulcahy and Rachel Nally for assistance in preparing this review. The authors' studies are supported by Science Foundation Ireland, Enterprise Ireland and the Stanley Medical Research Institute, and were carried out in the Institute of Biopharmaceutical Sciences under the Higher Education Authority's Programme for Research in Third Level Institutions, Ireland; a Nihon University research grant, research grants from the Sato Fund and the Dental Research Centre, the Promotion and Mutual Aid Corporation for Private Schools of Japan, a grant for promotion of multidisciplinary research projects and grants-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Waddington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waddington, J.L., O'Tuathaigh, C., O'Sullivan, G. et al. Phenotypic studies on dopamine receptor subtype and associated signal transduction mutants: insights and challenges from 10 years at the psychopharmacology–molecular biology interface. Psychopharmacology 181, 611–638 (2005). https://doi.org/10.1007/s00213-005-0058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0058-8

Keywords

Navigation