Skip to main content

Advertisement

Log in

Developing Maximal Neuromuscular Power

Part 1 — Biological Basis of Maximal Power Production

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

This series of reviews focuses on the most important neuromuscular function in many sport performances, the ability to generate maximal muscular power. Part 1 focuses on the factors that affect maximal power production, while part 2, which will follow in a forthcoming edition of Sports Medicine, explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability of the neuromuscular system to generate maximal power is affected by a range of interrelated factors. Maximal muscular power is defined and limited by the force-velocity relationship and affected by the length-tension relationship. The ability to generate maximal power is influenced by the type of muscle action involved and, in particular, the time available to develop force, storage and utilization of elastic energy, interactions of contractile and elastic elements, potentiation of contractile and elastic filaments as well as stretch reflexes. Furthermore, maximal power production is influenced by morphological factors including fibre type contribution to whole muscle area, muscle architectural features and tendon properties as well as neural factors including motor unit recruitment, firing frequency, synchronization and intermuscular coordination. In addition, acute changes in the muscle environment (i.e. alterations resulting from fatigue, changes in hormone milieu and muscle temperature) impact the ability to generate maximal power. Resistance training has been shown to impact each of these neuromuscular factors in quite specific ways. Therefore, an understanding of the biological basis of maximal power production is essential for developing training programmes that effectively enhance maximal power production in the human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1

Similar content being viewed by others

References

  1. Gollnick PD, Bayley WM. Biochemical training adaptations and maximal power. In: Jones NL, McCartney N, McComas AJ, editors. Human muscle power. Champaign(IL): Human Kinetics, 1986: 255–67

    Google Scholar 

  2. Kraemer WJ, Newton RU. Training for muscular power. Phys Med Rehabil Clin N Am 2000; 11 (2): 341–68

    PubMed  CAS  Google Scholar 

  3. Newton RU, Kraemer WJ. Developing explosive muscular power: implications for a mixed method training strategy. Strength Cond J 1994; 16 (5): 20–31

    Article  Google Scholar 

  4. Baker D. Comparison of upper-body strength and power between professional and college-aged rugby leagueplayers. J Strength Cond Res 2001 Feb; 15 (1): 30–5

    Google Scholar 

  5. Sleivert G, Taingahue M. The relationship between maximal jump-squat power and sprint acceleration in athletes. Eur J Appl Physiol 2004 Jan; 91 (1): 46–52

    Google Scholar 

  6. Young WB, Newton RU, Doyle TL, et al. Physiological and anthropometric characteristics of starters and nonstartersand playing positions in elite Australian rulesfootball: a case study. J Sci Med Sport 2005; 8 (3): 333–45

    Article  PubMed  CAS  Google Scholar 

  7. Caiozzo VJ, Perrine JJ, Edgerton VR. Training-induced alterations of the in vivo force-velocity relationship ofhuman muscle. J Appl Physiol 1981; 51 (3): 750–4

    PubMed  CAS  Google Scholar 

  8. Thorstensson A, Grimby G, Karlsson J. Force-velocity relations and fiber composition in human knee extensormuscles. J Appl Physiol 1976 Jan; 40 (1): 12–6

    Google Scholar 

  9. Widrick JJ, Trappe SW, Costill DL, et al. Force-velocity and force-power properties of single muscle fibers fromelite master runners and sedentary men. Am J Physiol 1996 Aug; 271 (2Pt1): C676–83

    Google Scholar 

  10. Kaneko M, Fuchimoto T, Toji H, et al. Training effect of different loads on the force-velocity relationship and mechanicalpower output in human muscle. Scand J Med Sci Sports 1983; 5 (2): 50–5

    Google Scholar 

  11. Komi PV. Measurement of the force-velocity relationship in human muscle under concentric and eccentric contractions.In: Cerguiglini S, editor. Biomechanics III. Basel: Karger, 1973: 224–9

    Google Scholar 

  12. Tihanyi J, Apor P, Fekete G. Force-velocity-power characteristics and fiber composition in human knee extensormuscles. Eur J Appl Physiol Occup Physiol 1982; 48 (3): 331–43

    Article  PubMed  CAS  Google Scholar 

  13. Bottinelli R, Pellegrino MA, Canepari M, et al. Specific contributions of various muscle fibre types to humanmuscle performance: an in vitro study. J Electromyogr Kinesiol 1999; 9 (2): 87–95

    Article  PubMed  CAS  Google Scholar 

  14. Hill AV. The heat of shortening and dynamic constants of muscle. Proc R Soc Lond B Biol Sci 1938; 126: 136–95

    Article  Google Scholar 

  15. Lieber RL. Skeletal muscle structure, function and plasticity: the physiological basis of rehabilitation. 3rd ed. Philadelphia (PA): Lippincott Williams & Williams, 2010

    Google Scholar 

  16. MacIntosh BR, Holash RJ. Power output and forcevelocity properties of muscle. In: Nigg BM, MacIntosh BR, Mester J, editors. Biomechanics and biology of movement. Champaign (IL): Human Kinetics, 2000: 193–210

    Google Scholar 

  17. Bosco C, Komi PV. Potentiation of the mechanical behavior of the human skeletal muscle through prestretching. Acta Physiol Scand 1979 Aug; 106 (4): 467–72

    Google Scholar 

  18. Edgerton VR, Roy RR, Gregor RJ, et al. Morphological basis of skeletal muscle power output. In: Jones NL, McCartney N, McComas AJ, editors. Human muscle power. Champaign (IL): Human Kinetics, Inc., 1986: 43–64

    Google Scholar 

  19. Faulkner JA, Claflin DR, McCully KK. Power output of fast and slow fibers from human skeletal muscles. In:Jones NL, McCartney N, McComas AJ, editors. Human muscle power. Champaign (IL): Human Kinetics Inc., 1986: 81–94

    Google Scholar 

  20. Herbert RD, Gandevia SC. Changes in pennation with joint angle and muscle torque: in vivo measurementsin human brachialis muscle. J Physiol 1995; 484 (Pt2): 523–32

    PubMed  CAS  Google Scholar 

  21. Wickiewicz TL, Roy RR, Powell PL, et al. Muscle architecture and force-velocity relationships in humans. J Appl Physiol 1984 Aug; 57 (2): 435–43

    Google Scholar 

  22. Gregor RJ, Edgerton VR, Perine JJ, et al. Torque-velocity relationship and muscle fiber composition in elite femaleathletes. J Appl Physiol 1979; 47: 388–92

    PubMed  CAS  Google Scholar 

  23. Perrine JJ, Edgerton VR. Muscle force-velocity and powervelocity relationships under isokinetic loading. Med Sci Sports 1978; 10 (3): 159–66

    PubMed  CAS  Google Scholar 

  24. Perrine JL. The biophysics of maximal muscle power outputs: methods and problems of measurement. In: Jones NL, McCartney N, McComas AJ, editors. Human muscle power. Champaign (IL): Human Kinetics, 1986: 15–25

    Google Scholar 

  25. Gordon AM, Huxley AV, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 1966; 184: 170–92

    PubMed  CAS  Google Scholar 

  26. Edman KAP. The relation between sarcomere length and active tension is isolated semitendinosus fibers of the frog. J Physiol 1966; 183 (2): 407–17

    PubMed  CAS  Google Scholar 

  27. Lieber RL, Loren GJ, Friden J. In vivo measurement of human wrist estensor muscle sarcomere length changes. J Neurophysiol 1994; 71 (3): 874–81

    PubMed  CAS  Google Scholar 

  28. Close RI. Dynamic properties of mammalian skeletal muscles. Physiol Rev 1972; 52: 129–97

    PubMed  CAS  Google Scholar 

  29. Komi PV. The stretch-shortening cycle and human power output. In: Jones NL, McCartney N, McComas AJ, editors. Human muscle power. Champaign (IL): Human Kinetics, 1986: 27–40

    Google Scholar 

  30. Cavanagh PR, Komi PV. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J Appl Physiol Occup Physiol 1979 Nov; (3): 159–63

    Google Scholar 

  31. Cavagna GA, Saibene FP, Margaria R. Effect of negative work on the amount of positive work performed by anisolated muscle. J Appl Physiol 1965; 20 (1): 157–8

    PubMed  CAS  Google Scholar 

  32. Edman KAP, Elzinga G, Noble MIM. Enhancement of mechanical performance by stretch during tetanic contractionsof vertebrate skeletal muscle fibres. J Physiol 1978; 281: 139–55

    PubMed  CAS  Google Scholar 

  33. Komi PV, Bosco C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med Sci Sports 1978 Winter; 10 (4): 261–5

    PubMed  CAS  Google Scholar 

  34. Cavagna GA, Dusman B, Margaria R. Positive work done by a previously stretched muscle. J Appl Physiol 1968 Jan; (1): 21–32

    Google Scholar 

  35. Anderson FC, Pandy MG. Storage and utilization of elastic strain energy during jumping. J Biomech 1993; 26 (12): 1413–27

    Article  PubMed  CAS  Google Scholar 

  36. Asmussen E, Bonde-Petersen F. Storage of elastic energy in skeletal muscles in man. Acta Physiol Scand 1974 Jul; (3): 385–92

    Google Scholar 

  37. Bosco C, Viitasalo JT, Komi PV, et al. Combined effect of elastic energy and myoelectrical potentiation duringstretch-shortening cycle exercise. Acta Physiol Scand 1982; 114: 557–65

    Article  PubMed  CAS  Google Scholar 

  38. Asmussen E, Bonde-Petersen F. Apparent efficiency and storage of elastic energy in human muscles during exercise. Acta Physiol Scand 1974; 92 (4): 537–45

    Article  PubMed  CAS  Google Scholar 

  39. Gollhofer A, Kyrolainen H. Neuromuscular control of the human leg extensor muscles in jump exercises under variousstretch-load conditions. Int J Sports Med 1991; 12 (1): 34–40

    Article  PubMed  CAS  Google Scholar 

  40. Takarada Y, Hirano Y, Ishige Y, et al. Stretch-induced enhancement of mechanical power output in humanmultijoint exercise with countermovement. J Appl Physiol 1997; 83 (5): 1749–55

    PubMed  CAS  Google Scholar 

  41. van Zandwijk JP, Bobbert MF, Baan GC, et al. From twitch to tetanus: performance of excitation dynamicsoptimized for a twitch in predicting tetanic muscle forces. Biol Cybern 1996; 75 (5): 409–17

    Article  PubMed  Google Scholar 

  42. Bobbert MF, Casius LJR. Is the effect of a countermovement on jump height due to active state development? Med Sci Sports Exerc 2005; 37 (3): 440–6

    Article  PubMed  Google Scholar 

  43. Bobbert MF, Gerritsen KG, Litjens MC, et al. Why is countermovement jump height greater than squat jumpheight? Med Sci Sports Exerc 1996 Nov; 28 (11): 1402–12

    Google Scholar 

  44. Mungiole M, Winters JM. Overview: influences of muscle on cyclic and propolsive movements involving the lowerlimb. In:Winters JM, Woo SLY, editors. Multiple musclesystems biomechanics and movement organisation. NewYork: Springer-Verlag, 1990: 550–67

    Google Scholar 

  45. van Ingen Schenau GJ. An alternate view to the concept of utilisation of elastic energy. Hum Mov Sci 1984; 3: 301–36

    Article  Google Scholar 

  46. Bosco C, Montanari G, Tarkka I, et al. The effect of prestretch on mechanical efficiency of human skeletal muscle. Acta Physiol Scand 1987 Nov; 131 (3): 323–9

    Google Scholar 

  47. Walshe AD, Wilson GJ, Ettema GJ. Stretch-shorten cycle compared with isometric preload: contributions to enhancedmuscular performance. J Appl Physiol 1998 Jan; (1): 97–106

    Google Scholar 

  48. van Ingen Schenau GJ, Bobbert MF, de Haan A. Mechanics and energetics of the stretch-shortening cycle: astimulating discussion. J Appl Biomech 1997; 13: 484–96

    Google Scholar 

  49. Cavagna GA, Citterio G. Effect of stretching on the elastic characteristics and the contractile component of frogstriated muscle. J Physiol 1974; 239: 1–14

    PubMed  CAS  Google Scholar 

  50. Ettema GJ, Huijing PA, de Haan A. The potentiating effect of prestretch on the contractile performance of rat gastrocnemiusmedialis muscle during subsequent shorteningand isometric contractions. J Exp Biol 1992 Apr; 165: 121–36

    Google Scholar 

  51. Ettema GJ, van Soest AJ, Huijing PA. The role of series elastic structures in prestretch-induced work enhancementduring isotonic and isokinetic contractions. J Exp Biol 1990 Nov; 154: 121–36

    Google Scholar 

  52. Huijing PA. Parameter interdependence and success of skeletal muscle modelling. Hum Mov Sci 1995; 14: 443–86

    Article  Google Scholar 

  53. Fukunaga T, Kubo K, Kawakami Y, et al. In vivo behavior of human muscle tendon during walking. Proc Biol Sci 2001; 268: 229–33

    Article  PubMed  CAS  Google Scholar 

  54. Kawakami Y, Muraoka T, Ito S, et al. In vivo muscle fibre behaviour during counter-movement exercise in humansreveals a significant role for tendon elasticity. J Physiol 2002 Apr; 540 (Pt2): 635–46

    Google Scholar 

  55. Kubo K, Kanehisa H, Takeshita D, et al. In vivo dynamics of human medial gastrocnemius muscle-tendon complexduring stretch-shortening cycle exercise. Acta Physiol Scand 2000; 170 (2): 127–35

    Article  PubMed  CAS  Google Scholar 

  56. Kurokawa S, Fukunaga T, Fukashiro S. Behavior of fascicles and tendinous structures of human gastrocnemiusduring vertical jumping. J Appl Physiol 2001 Apr; 90 (4): 1349–58

    Google Scholar 

  57. Kurokawa S, Fukunaga T, Nagano A, et al. Interaction between fascicles and tendinous structures during countermovement jumping investigated in vivo. J Appl Physiol 2003 Dec; 95 (6): 2306–14

    Google Scholar 

  58. Hof AL, Geelen BA, van den Berg J. Calf muscle moment, work and efficiency in level walking; role of series elasticity. J Biomech 1983; 16 (7): 523–37

    Article  PubMed  CAS  Google Scholar 

  59. Fukashiro S, Kurokawa S, Hay DC, et al. Comparison of muscle-tendon interaction of human m.gastrocnemius between ankle- and drop-jumping. Int J Sport Health Sci 2005; 3: 253–63

    Article  Google Scholar 

  60. Fukashiro S, Hay DC, Nagano A. Biomechanical behavior of muscle-tendon complex during dynamic humanmovements. J Appl Biomech 2006 May; 22 (2): 131–47

    Google Scholar 

  61. Cook CS, McDonagh MJ. Force responses to controlled stretches of electrically stimulated human muscle-tendoncomplex. Exp Physiol 1995; 80 (3): 477–90

    PubMed  CAS  Google Scholar 

  62. Cavagna GA, Mazzanti M, Heglund NC, et al. Storage and release of mechanical energy by active muscle: a nonelasticmechanism? J Exp Biol 1985; 115: 79–87

    PubMed  CAS  Google Scholar 

  63. Cavagna GA, Mazzanti M, Heglund NC, et al. Mechanical transients initiated by ramp stretch and release at Po infrog muscle fibres. Am J Physiol 1986 Oct; 251 (4Pt1): C571–9

    Google Scholar 

  64. Sugi H, Tsuchiya T. Enhancement of mechanical performance in frog muscle fibres after quick increases in load. J Physiol 1981; 319: 239–52

    PubMed  CAS  Google Scholar 

  65. Woledge RC, Curtin NA. The efficiency of energy conversion by swimming muscles of fish. In: Sugi H, Pollack GH,editors. Mechanisms of my ofilament sliding in muscle contraction. New York: Plenum Press, 1993: 735–47

    Chapter  Google Scholar 

  66. van Ingen Schenau GJ, Bobbert MF, de Haan A. Does elastic energy enhance work and efficiency in the stretchshorteningcycle? J Appl Biomech 1997; 13: 389–415

    Google Scholar 

  67. Rassier DE, Herzog W. Force enhancement following an active stretch in skeletal muscle. J Electromyogr Kinesiol 2002 Dec; 12 (6): 471–7

    Google Scholar 

  68. Herzog W, Leonard TR, Joumaa V, et al. Mysteries of muscle contraction. J Appl Biomech 2008 Feb; 24 (1): 1–13

    Google Scholar 

  69. Joumaa V, Rassier DE, Leonard TR, et al. Passive force enhancement in single myofibrils. Pflugers Arch 2007 Nov; 455 (2): 367–71

    Google Scholar 

  70. Joumaa V, Rassier DE, Leonard TR, et al. The origin of passive force enhancement in skeletal muscle. Am J Physiol Cell Physiol 2008 Jan; 294 (1): C74–8

    Google Scholar 

  71. Leonard TR, Herzog W. Regulation of muscle force in the absence of actin-myosin based cross-bridge interaction. Am J Physiol Cell Physiol. Epub 2010 Mar 31

    Google Scholar 

  72. Schmidt RA, Lee TD. Motor control and learning: a behavioral emphasis. Champaign (IL): Human Kinetics, 2005

    Google Scholar 

  73. Dietz V, Schmidtbleicher D, Noth J. Neuronal mechanisms of human locomotion. J Neurophysiol 1979; 42: 1212–22

    PubMed  CAS  Google Scholar 

  74. Komi PV, Gollhofer A. Stretch reflexes can have an important role in force enhancement during SSC exercise. J Appl Biomech 1997; 13: 451–60

    Google Scholar 

  75. Trimble MH, Kukulka CG, Thomas RS. Reflex facilitation during the stretch-shortening cycle. J Electromyogr Kinesiol 2000; 10 (3): 179–87

    Article  PubMed  CAS  Google Scholar 

  76. Komi PV, Nicol C. Shortening cycle of muscle function. In: Zatsiorsky VM, editor. Biomechanics in sport. Oxford: Blackwell Science, 2000: 87–102

    Google Scholar 

  77. Nicol C, Komi PV. Significance of passively induced stretch reflexes on Achilles tendon force enhancement. Muscle Nerve 1998; 21 (11): 1546–8

    Article  PubMed  CAS  Google Scholar 

  78. Voigt M, Dyhre-Poulsen P, Simonsen EB. Modulation of short latency stretch reflexes during human hopping. Acta Physiol Scand 1998; 163 (2): 181–94

    Article  PubMed  CAS  Google Scholar 

  79. Cormie P, McCaulley GO, McBride JM. Power versus strength-power jump squat training: influence on theload-power relationship. Med Sci Sports Exerc 2007; 39 (6): 996–1003

    PubMed  Google Scholar 

  80. Mayhew JL, Ware JS, Johns RA, et al. Changes in upper body power following heavy-resistance strength trainingin college men. Int J Sports Med 1997; 18: 516–20

    Article  PubMed  CAS  Google Scholar 

  81. McBride JM, Triplett-McBride T, Davie A, et al. The effect of heavy- vs.light-load jump squats on the developmentof strength, power, and speed. J Strength Cond Res 2002; 16 (1): 75–82

    Google Scholar 

  82. Stone ME, Johnson R, Carter D. A short term comparison of two different methods of resistive training on legstrength and power. Athl Train 1979; 14: 158–60

    Google Scholar 

  83. Stowers T, McMillan J, Scala D, et al. The short-term effects of three different strength-power training methods. NSCA J 1983; 5 (3): 24–7

    Google Scholar 

  84. Wilson GJ, Newton RU, Murphy AJ, et al. The optimal training load for the development of dynamic athleticperformance. Med Sci Sports Exerc 1993; 25 (11): 1279–86

    PubMed  CAS  Google Scholar 

  85. Fitts RH, Widrick JJ. Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev 1996; 24: 427–73

    Article  PubMed  CAS  Google Scholar 

  86. Malisoux L, Francaux M, Nielens H, et al. Stretch-shortening cycle exercises: an effective training paradigm to enhancepower output of human single muscle fibers. J Appl Physiol 2006; 100 (3): 771–9

    Article  PubMed  Google Scholar 

  87. Widrick JJ, Stelzer JE, Shoepe TC, et al. Functional properties of human muscle fibers after short-term resistanceexercise training. Am J Physiol Regul Integr Comp Physiol 2002; 283 (2): R408–16

    PubMed  CAS  Google Scholar 

  88. Lionikas A, Li M, Larsson L. Human skeletal muscle myosin function at physiological and non-physiologicaltemperatures. Acta Physiol 2006; 186 (2): 151–8

    Article  CAS  Google Scholar 

  89. Stienen GJM, Kiers JL, Bottinelli R, et al. Myofibrillar ATPase activity in skinned human skeletal muscle fibres:fibre type and temperature dependence. J Physiol 1996; 493 (2): 299–307

    PubMed  CAS  Google Scholar 

  90. Barany M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 1967; 50: 197–218

    Article  PubMed  Google Scholar 

  91. Bottinelli R, Betto R, Schiaffino S, et al. Unloaded shortening velocity and myosin heavy chain and alkali lightchain isoform composition in rat skeletal muscle fibres. J Physiol 1994; 478: 341–9

    PubMed  CAS  Google Scholar 

  92. Bottinelli R, Schiaffino S, Reggiani C. Force-velocity relationship and myosin heavy chain isoform compositionsof skinned fibres from rat skeletal muscle. J Physiol 1991; 437: 655–72

    PubMed  CAS  Google Scholar 

  93. Close RI. Dynamic proprties of fast and slow skeletal muscles of the rat during development. J Physiol 1964; 173: 74–95

    PubMed  CAS  Google Scholar 

  94. Faulkner JA, Clafin DR, McCully KK, et al. Contractile properties of bundles of fiber segments from skeletalmuscles. Am J Physiol 1982; 242 (12): C66–73

    Google Scholar 

  95. Trappe SW, Gallagher PM, Harber M, et al. Single muscle fibre contractile properties in young and old men andwomen. J Physiol 2003; 552: 47–58

    Article  PubMed  CAS  Google Scholar 

  96. Widrick JJ, Trappe SW, Blaser CA, et al. Isometic force and maximal shortening velocity of single muscle fibers fromelite master runners. Am J Physiol 1996; 271: C666–75

    Google Scholar 

  97. McCartney N, Heigenhauser GJF, Jones NL. Power output and fatigue of human muscle in maximal cycling exercise. J Appl Physiol 1983; 55: 218–24

    PubMed  CAS  Google Scholar 

  98. Costill DL, Daniels J, Evans WJ, et al. Skeletal muscle enzymes and fiber composition in male and female trackathletes. J Appl Physiol 1976; 40: 149–54

    PubMed  CAS  Google Scholar 

  99. Gollnick PD, Armstrong RB, Saubert CW, et al. Enzyme activity and fiber composition in skeletal muscle of untrainedand trained men. J Appl Physiol 1972; 33: 312–9

    PubMed  CAS  Google Scholar 

  100. Simoneau JA, Boucard C. Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J 1995; 9: 1091–5

    PubMed  CAS  Google Scholar 

  101. Jansson E, Esbjonsson M, Holm H, et al. Increase in the proportion of fast-twitch muscle fibres by sprint trainingin males. Acta Physiol Scand 1990; 140 (3): 359–63

    Article  PubMed  CAS  Google Scholar 

  102. Esbjonsson M, Hellsetn-Westing Y, Balsom PD, et al. Muscle fibre type changes with sprint training: effect oftraining pattern. Acta Physiol Scand 1993; 149 (2): 245–6

    Article  Google Scholar 

  103. Dawson B, Fitzsimons M, Green S, et al. Changes in performance, muscle metabolites, enzymes and fibre typesafter short sprint training. Eur J Appl Physiol Occup Physiol 1998; 78 (2): 163–9

    Article  PubMed  CAS  Google Scholar 

  104. Andersen JL, Klitgaard H, Saltin B. Myosin heavy chain isoforms in single fibres from M. vastus lateralis ofsprinters: influence of training. Acta Physiol Scand 1994; 151 (2): 135–42

    Article  PubMed  CAS  Google Scholar 

  105. Friedmann B, Kinscherf R, Vorwald S, et al. Muscular adaptations to computer-guided strength trainingwith eccentric overload. Acta Physiol Scand 2004; 182 (1): 77–88

    Article  PubMed  CAS  Google Scholar 

  106. Larsson L, Ansved T. Effects of long-term physical training and detraining on enzyme histochemical and functionalskeletal muscle characteristics in man. Muscle Nerve 1985; 8 (8): 714–22

    Article  PubMed  CAS  Google Scholar 

  107. Andersen LL, Andersen JL, Magnusson SP, et al. Changes in the human muscle force-velocity relationship in responseto resistance training and subsequent detraining. J Physiol 2005; 99: 87–94

    Google Scholar 

  108. Adams GR, Hather BM, Baldwin KM, et al. Skeletal muscle myosin heavy chain composition and resistancetraining. J Appl Physiol 1993; 74: 911–5

    PubMed  CAS  Google Scholar 

  109. Staron RS, Karapondo DL, Kraemer WJ, et al. Skeletal muscle adaptations during the early phase of heavyresistancetraining in men and women. J Appl Physiol 1994; 76: 1247–55

    PubMed  CAS  Google Scholar 

  110. Andersen JL, Aagaard P. Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve 2000; 23 (7): 1095–104

    Article  PubMed  CAS  Google Scholar 

  111. Brooks GA, Fahey TD, White TP, et al. Exercise physiology: human bioenergetics and its application. 3rd ed. NewYork: McGraw Hill, 1999

    Google Scholar 

  112. Staron RS, Leonardi MJ, Karapondo DL, et al. Strength and skeletal muscle adaptations in heavy-resitance trainedwomen after detraining and retraining. J Appl Physiol 1991; 70: 631–40

    PubMed  CAS  Google Scholar 

  113. Liu Y, Schlumberger A, Wirth K, et al. Different effects on human myosin heavy chain isoform expression: strength vs.combined training. J Appl Physiol 2003; 94 (6): 2282–8

    PubMed  CAS  Google Scholar 

  114. Ewing WJ, Wolfe DR, Rogers MA, et al. Effects of velocity of isokinetic training on strength, power and quadricepsmuscle fibre characteristics. Eur J Appl Physiol 1990; 61: 159–62

    Article  Google Scholar 

  115. McGuigan MR, Sharman MJ, Newton RU, et al. Effect of explosive resistance training on titin and myosin heavychain isoforms in trained subjects. J Strength Cond Res 2003 Nov; 17 (4): 645–51

    Google Scholar 

  116. Malisoux L, Francaux M, Nielens H, et al. Calcium sensitivity of human single muscle fibers following plyometrictraining. Med Sci Sports Exerc 2006 Nov; 38 (11): 1901–8

    Google Scholar 

  117. McComas AJ. Skeletal muscle: form and function. Champaign (IL): Human Kinetics, 1996

    Google Scholar 

  118. Bodine S, Roy RR, Meadows DA, et al. Architectural, histochemical and contractile characteristics of a uniquebiarticular muscle: the cat semitendinosus. J Neurophysiol 1982; 48: 192–201

    PubMed  CAS  Google Scholar 

  119. Partridge LD, Benton LA. Muscle, the motor. In: Mountcastle VB, Brooks VB, Greiger SR, editors. Handbook of physiology. Bethesda (MD): American Physiological Society, 1981

    Google Scholar 

  120. Shoepe TC, Stelzer JE, Garner DP, et al. Functional adaptability of muscle fibers to long-term resistance exercise. Med Sci Sports Exerc 2003; 35: 944–51

    Article  PubMed  Google Scholar 

  121. Ikai M, Fukunaga T. Calculation of muscle strength per unit cross-sectional area of human muscle by means ofultrasonic measurement. Int Z Angew Physiol 1968; 26: 26–32

    PubMed  CAS  Google Scholar 

  122. Maughan RJ, Watson JS, Weir J. Strength and crosssectional area of human skeletal muscle. J Physiol 1983; 338: 37–49

    PubMed  CAS  Google Scholar 

  123. Maughan RJ, Watson JS, Weir J. Muscle strength and cross-sectional area in man: a comparison of strengthtrainedand untrained subjects. Br J Sports Med 1984; 18 (3): 149–57

    Article  PubMed  CAS  Google Scholar 

  124. Jones DA, Rutherford OM, Parker DF. Physiological changes in skeletal muscle as a result of strength training. Q J Exp Physiol 1989; 74 (3): 233–56

    PubMed  CAS  Google Scholar 

  125. Rutherford OM, Jones DA. The role of learning and coordination in strength training. Eur J Appl Physiol 1986; 55: 100–5

    Article  CAS  Google Scholar 

  126. Chapman SJ, Grindrod SR, Jones DA. Cross-sectional area and force production of the quadriceps muscle. J Physiol 1984; 353: 53P

    Google Scholar 

  127. Komi PV. Training of muscle strength and power: interaction of neuromotoric, hypertrophic, and mechanicalfactors. Int J Sports Med 1986; 7 Suppl.1: 10–5

    Article  PubMed  Google Scholar 

  128. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc 1988; 20 (5Suppl.): 135S–45S

    Google Scholar 

  129. Narici MV, Roi GS, Landoni L, et al. Changes in forcecross- sectional area and neural activation during strengthtraining and detraining of the human quadriceps. Eur JAppl Physiol 1989; 59: 310–9

    Article  CAS  Google Scholar 

  130. Young A. The relative isometric strength of type 1 and type 2 muscle fibres in the human quadriceps. Clin Physiol 1984; 4: 23–32

    Article  PubMed  CAS  Google Scholar 

  131. Aagaard P, Andersen JL, Dyhre-Poulsen P, et al. A mechanism for increased contractile strength of humanpennate muscle in response to strength training: changesin muscle architecture. J Physiol 2001; 534 (Pt2): 613–23

    Article  PubMed  CAS  Google Scholar 

  132. McCullough P, Maughan RJ, Watson JS, et al. Biomechanical analysis of the knee in relation to measuredquadriceps strength and cross sectional area in man[letter]. J Physiol 1984; 346: 60P

    Google Scholar 

  133. Trappe SW, Williamson DL, Godard M, et al. Effect of resistance training on single muscle fiber contractilefunction in older men. J Appl Physiol 2000; 89: 143–52

    PubMed  CAS  Google Scholar 

  134. MacDougall JD.Morphological changes in human skeletal muscle following strength training and immobilization.In: Jones NL, McCartney N, McComas AJ, editors. Human muscle power. Champaign (IL): Human Kinetics,1986: 269–88

    Google Scholar 

  135. MacDougall JD. Hypertrophy or hyperplasia. In: Komi PV, editor. Strength and power in sport. Oxford: BlackwellScientific Publications, 1992: 230–8

    Google Scholar 

  136. Thorstensson A. Muscle strength, fibre types and enzyme activities in man. Acta Physiol Scand Suppl 1976; 443: 1–45

    PubMed  CAS  Google Scholar 

  137. MacDougall JD, Elder GCB, Sale DG, et al. Effects of strength training and immobilization on human musclefibers. Eur J Appl Physiol 1980; 43: 25–34

    Article  CAS  Google Scholar 

  138. Dons B, Bollerup K, Bonde-Petersen F, et al. The effect of weight-lifting exercise related to muscle fiber compositionand muscle cross-sectional area in humans. Eur J Appl Physiol 1979; 40: 95–106

    Article  CAS  Google Scholar 

  139. Häkkinen K, Komi PV, Tesch PA. Effect of combined concentric and eccentric strength training and detrainingon force-time, muscle fibre and metabolic characteristicsof leg extensor muscles. Scand J Sports Sci 1981; 3: 50–8

    Google Scholar 

  140. Thorstensson A, Hulten B, von Dobeln W, et al. Effect of strength training on enzyme activities and fibre characteristicsin human skeletal muscle. Acta Physiol Scand 1976; 96: 392–8

    Article  PubMed  CAS  Google Scholar 

  141. Staron RS, Malicky ES, Leonardi MJ, et al. Muscle hypertrophy and fast fiber type conversions in heavy resistancetrainedwomen. Eur J Appl Physiol 1989; 60: 71–9

    Article  Google Scholar 

  142. Blazevich AJ, Gill ND, Bronks R, et al. Training-specific muscle architecture adaptation after 5-wk training inathletes. Med Sci Sports Exerc 2003; 35 (12): 2013–22

    Article  PubMed  Google Scholar 

  143. Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions toincreased strength. Sports Med 2007; 37 (2): 145–68

    Article  PubMed  Google Scholar 

  144. Wernbom M, Augustsson J, Thomee R. The influence of frequency, intensity, Vol. and mode of strength trainingon whole muscle cross-sectional area in humans. Sports Med 2007; 37 (3): 225–64

    Article  PubMed  Google Scholar 

  145. Häkkinen K, Komi PV, Alen M. Effect of explosive type strength training on isometric force- and relaxation-time,electromyographic and muscle fibre characteristics ofleg extensor muscles. Acta Physiol Scand 1985; 125 (4): 587–600

    Article  PubMed  Google Scholar 

  146. Häkkinen K, Komi PV, Alen M, et al. EMG, muscle fibre and force production characteristics during a 1 yeartraining period in elite weight-liters. Eur J Appl Physiol 1987; 56: 419–27

    Article  Google Scholar 

  147. Häkkinen K, Pakarinen A, Kyröläinen H, et al. Neuromuscular adaptations and serum hormones in femalesduring prolonged power training. Int J Sports Med 1990; 11 (2): 91–8

    Article  PubMed  Google Scholar 

  148. Komi PV, Karlsson J, Tesch P, et al. Effects of heavy resistance and explosive type strength training methods onmechanical, functional and metabolic aspects of performance. In: Komi PV, editor. Exercise and sport biology. Champaign (IL): Human Kinetics, 1982: 90–102

    Google Scholar 

  149. Kyrolainen H, Avela J, McBride JM, et al. Effects of power training on muscle structure and neuromuscular performance. Scand J Med Sci Sports 2005; 15 (1): 58–64

    Article  PubMed  CAS  Google Scholar 

  150. Potteiger JA, Lockwood R, Haub M, et al. Muscle power and fiber characteristics following 8 weeks of plyometrictraining. J Strength Cond Res 1999; 13: 275–9

    Google Scholar 

  151. Vissing K, Brink M, Lonbro S, et al. Muscle adaptations to plyometric vs. resistance training in untrained young men. J Strength Cond Res 2008 Nov; 22 (6): 1799–810

    Google Scholar 

  152. Kubo K, Morimoto M, Komuro T, et al. Effects of plyometric and weight training onmuscle-tendon complex andjump performance. Med Sci Sports Exerc 2007; 39 (10): 1801–10

    Article  PubMed  Google Scholar 

  153. Wickiewicz TL, Roy RR, Powell PL, et al. Muscle architecture of the human lower limb. Clin Orthop Relat Res 1983; 179: 275–83

    Article  PubMed  Google Scholar 

  154. Sacks RD, Roy RR. Architecture of the hind limb of muscle of cats: functional significance. J Morphol 1982; 173: 185–95

    Article  PubMed  CAS  Google Scholar 

  155. Spector SA, Gardiner PF, Zernicke RF, et al. Muscle architecture and the force-velocity characteristics of catsoleus and medial gastrocnemius: impliations for motorcontrol. J Neurophysiol 1980; 44: 951–60

    PubMed  CAS  Google Scholar 

  156. Abe T, Fukashiro S, Harada Y, et al. Relationship between sprint performance and muscle fascicle length in femalesprinters. J Physiol Anthropol 2001; 20 (2): 141–7

    Article  CAS  Google Scholar 

  157. Kumagai K, Abe T, Brechue WF, et al. Sprint performance is related to muscle fascicle length inmale 100-m sprinters. J Appl Physiol 2000 Mar; 88 (3): 811–6

    Google Scholar 

  158. Abe T, Kumagai K, Brechue WF. Muscle fascicle length is greater in sprinters than long-distance runners. Med Sci Sports Exerc 2000; 32: 1125–9

    Article  PubMed  CAS  Google Scholar 

  159. Butterfield TA, Leonard TR, Herzog W. Differential serial sarcomere number adaptations in knee extensor musclesof rats is contraction type dependent. J Appl Physiol 2005; 99: 1352–8

    Article  PubMed  Google Scholar 

  160. Lynn R, Morgan DL. Decline running produces more sarcomeres in rat vastus intermedius muscle fibers thandoes incline running. J Appl Physiol 1994; 79: 1439–44

    Google Scholar 

  161. Lynn R, Talbot JA, Morgan DL. Differences in rat skeletal muscles after incline and decline running. J Appl Physiol 1998; 85: 98–104

    PubMed  CAS  Google Scholar 

  162. Blazevich AJ, Cannavan D, Coleman DR, et al. Influence of concentric and eccentric resistance training on architecturaladaptation in human quadriceps muscles. J Appl Physiol 2007; 103 (5): 1565–75

    Article  PubMed  Google Scholar 

  163. Reeves ND, Narici MV, Maganaris CN. In vivo human muscle structure and function: adaptations to resistancetraining in old age. Exp Physiol 2004; 89 (6): 675–89

    Article  PubMed  CAS  Google Scholar 

  164. Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response tohigh-intensity resistance training. J Appl Physiol 2007; 102: 368–73

    Article  PubMed  CAS  Google Scholar 

  165. Alegre LM, Jimenez F, Gonzalo-Orden JM, et al. Effects of dynamic resistance training on fascicle length and isometricstrength. J Sports Sci 2006; 24 (5): 501–8

    Article  PubMed  Google Scholar 

  166. Kawakami Y, Abe T, Kuno SY, et al. Training-induced changes in muscle architecture and specific tension. Eur JAppl Physiol 1995; 72 (1-2): 566–73

    Google Scholar 

  167. Rutherford OM, Jones DA. Measurement of fibre pennation using ultrasound in the human quadriceps in vivo. Eur J Appl Physiol Occup Physiol 1992; 65 (5): 433–7

    Article  PubMed  CAS  Google Scholar 

  168. Blazevich AJ, Gill ND, Deans N, et al. Lack of human muscle architectural adaptation after short-term strengthtraining. Muscle Nerve 2007; 35 (1): 78–86

    Article  PubMed  Google Scholar 

  169. Blazevich AJ, Sharp NC. Understanding muscle architectural adaptation: macro- and micro-level research. Cells Tissues Organs 2005; 181 (1): 1–10

    Article  PubMed  Google Scholar 

  170. Huijing PA. Architecture of the human gastrocnemius muscle and some functional consequences. Acta Anat(Basel) 1985; 123: 101–7

    Article  CAS  Google Scholar 

  171. Powell P, Roy RR, Kanim P, et al. Predictability of skeletal muscle tension from architectural determinations in guineapig hindlimbs. J Appl Physiol 1984; 57: 1715–21

    PubMed  CAS  Google Scholar 

  172. Gans C. Fiber architecture and muscle function. Exerc Sport Sci Rev 1982; 10: 160–207

    Article  PubMed  CAS  Google Scholar 

  173. Muhl ZF. Active length-tension relation and the effect of muscle pinnation on fiber lengthening. J Morphol 1982; 173: 285–92

    Article  PubMed  CAS  Google Scholar 

  174. Kawakami Y, Takashi A, Fukunaga T. Muscle-fiber pennations angles are greater in hypertrophied than in normalmuscles. J Appl Physiol 1993; 74 (6): 2740–4

    PubMed  CAS  Google Scholar 

  175. Kawakami Y, Abe T, Kanehisa H, et al. Human skeletal muscle size and architecture: variability and interdependence. Am J Hum Biol 2006 Nov-Dec; 18 (6): 845–8

    Google Scholar 

  176. Blazevich AJ, Giorgi A. Effect of testosterone administration and weight training on muscle architecture. Med Sci Sports Exerc 2001; 33 (10): 1688–93

    Article  PubMed  CAS  Google Scholar 

  177. Westh E, Kongsgaard M, Bojsen-Møller J, et al. Effect of habitual exercise on the structural and mechanical propertiesof human tendon, in vivo, in men and women. Scand J Med Sci Sports 2008 Feb; 18 (1): 23–30

    Google Scholar 

  178. Kubo K, Ishida Y, Suzuki S, et al. Effects of 6 months of walking training on lower limb muscle and tendon in elderly. Scand J Med Sci Sports 2008 Feb; 18 (1): 31–9

    Google Scholar 

  179. Kubo K, Kanehisa H, Kawakami Y, et al. Elasticity of tendon structures of the lower limbs in sprinters. Acta Physiol Scand 2000 Feb; 168 (2): 327–35

    Google Scholar 

  180. Bojsen-Møller J, Magnusson SP, Rasmussen LR, et al. Muscle performance during maximal isometric and dynamiccontractions is influenced by the stiffness of the tendinousstructures. J Appl Physiol 2005 Sep; 99 (3): 986–94

    Google Scholar 

  181. Henneman E, Clamann HP, Gillies JD, et al. Rank order of motoneurons within a pool, law of combination. J Neurophysiol 1974; 37: 1338–49

    PubMed  CAS  Google Scholar 

  182. Henneman E, Somjen G, Carpenter DO. Functionl significance of cell size in spinal motoneurons. J Neurophysiol 1965; 28: 560–80

    PubMed  CAS  Google Scholar 

  183. Burke RE. Motor units: anatomy, physiology, and functional organization. In: Brooks VB, editor. Handbook of physiology: section I — the nervous system Vol. II. Washington, DC: American Physiological Society, 1981: 345–422

    Google Scholar 

  184. Milner-Brown HS, Stein RB. The relationship between the surface electromyogram and muscular force. J Physiol 1975; 246: 549–69

    PubMed  CAS  Google Scholar 

  185. Desmedt JE, Godaux E. Ballistic contractions in man: characteristic recruitment pattern of single motor units ofthe tibialis anterior muscle. J Physiol 1977; 264: 673–93

    PubMed  CAS  Google Scholar 

  186. Desmedt JE, Godaux E. Ballistic contractions in fast or slow human muscles: discharge patterns of single motorunits. J Physiol 1978; 285: 185–96

    PubMed  CAS  Google Scholar 

  187. van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contractionspeed after dynamic training in humans. J Physiol 1998 Nov; 513 (Pt1): 295–305

    Google Scholar 

  188. Enoka RM. Morphological features and activation patterns of motor units. J Clin Neurophysiol 1995; 12: 538–59

    Article  PubMed  CAS  Google Scholar 

  189. Enoka RM, Fuglevand AJ. Motor unit physiology: some unresolved issues. Muscle Nerve 2001; 24: 4–17

    Article  PubMed  CAS  Google Scholar 

  190. Sale DG. Neural adaptations to strength training. In: Komi PV, editor. Strength and power in sport. 2nd ed. Oxford: Blackwell Science, 2003: 281–313

    Chapter  Google Scholar 

  191. Bigland B, Lippold OCJ. Motor unit activity in the voluntary contractions of human muscle. J Physiol 1954; 125: 322–35

    PubMed  CAS  Google Scholar 

  192. Belanger AY, McComas AJ. Extent of motr unit activation during effort. J Appl Physiol 1981; 51 (5): 1131–5

    PubMed  CAS  Google Scholar 

  193. Bellemare F, Woods JJ, Johansson R, et al. Motor-unit discharge rates in maximal voluntary contractions ofthree human muscles. J Neurophysiol 1983; 50: 1380–92

    PubMed  CAS  Google Scholar 

  194. Grimby L, Hannerz J, Hedman B. The fatigue and voluntary discharge properties of single motor units in man. J Physiol 1981; 316: 545–54

    PubMed  CAS  Google Scholar 

  195. Shield A, Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med 2004; 34 (4): 253–367

    Article  PubMed  Google Scholar 

  196. Davies J, Parker DF, Rutherford OM, et al. Changes in strength and cross sectional area of the elbow flexors as aresult of isometric strength training. Eur J Appl Physiol Occup Physiol 1988; 57 (6): 667–70

    Article  PubMed  CAS  Google Scholar 

  197. Garfinkel S, Cafarelli E. Relative changes in maximal force, EMG, and muscle cross-sectional area after isometric training. Med Sci Sports Exerc 1992; 24 (11): 1220–7

    PubMed  CAS  Google Scholar 

  198. Herbert RD, Dean C, Gandevia SC. Effects of real and imagined training on voluntary muscle activation during maximal isometric contractions. Acta Physiol Scand 1998; 163 (4): 361–8

    Article  PubMed  CAS  Google Scholar 

  199. Harridge SD, Kryger A, Stensgaard A. Knee extensor strength, activation, and size in very elderly people followingstrength training. Muscle Nerve 1999; 22 (7): 831–9

    Article  PubMed  CAS  Google Scholar 

  200. Brown AB, McCartney N, Sale DG. Positive adaptations to weight-lifting training in the elderly. J Appl Physiol 1990; 69 (5): 1725–33

    PubMed  CAS  Google Scholar 

  201. Jones DA, Rutherford OM. Human muscle strength training: the effects of three different regimes and thenature of the resultant changes. J Physiol 1987; 391: 1–11

    PubMed  CAS  Google Scholar 

  202. Sale DG, Martin JE, Moroz DE. Hypertrophy without increased isometric strength after weight training. Eur JAppl Physiol Occup Physiol 1992; 64 (1): 51–5

    Article  CAS  Google Scholar 

  203. Carolan B, Cafarelli E. Adaptations in coactivation after isometric resistance training. J Appl Physiol 1992; 73: 911–7

    PubMed  CAS  Google Scholar 

  204. Babault N, Pousson M, Ballay Y, et al. Activation of human quadriceps femoris during isometric, concentric,and eccentric contractions. J Appl Physiol 2001; 91 (6): 2628–34

    PubMed  CAS  Google Scholar 

  205. Duchateau J, Hainaut K. Mechanisms of muscle and motor unit adaptation to explosive power training. In: Komi PV, editor. Strength and power in sport. 2nd ed. Oxford: Blackwell Science, 2003: 315–29

    Google Scholar 

  206. Kraemer WJ, Fleck SJ, Evans WJ. Strength and power training: physiological mechanisms of adaptation. Exerc Sport Sci Rev 1996; 24: 363–97

    Article  PubMed  CAS  Google Scholar 

  207. Smith JL, Betts B, Edgerton VR, et al. Rapid ankle extension during paw shakes: selective recruitment of fast ankleextensors. J Neurophysiol 1980; 43: 612–20

    PubMed  CAS  Google Scholar 

  208. Enoka RM. Eccentric contractions require unique activation strategies by the nervous system. J Appl Physiol 1996 Dec; 81 (6): 2339–46

    Google Scholar 

  209. Nardone A, Romano C, Schieppati M. Selective recruitment of high-threshold human motor units during voluntaryisotonic lengthening of active muscles. J Physiol 1989; 409: 451–71

    PubMed  CAS  Google Scholar 

  210. Feiereisen P, Duchateau J, Hainaut K. Motor unit recruitment order during voluntary and electrically induced contractions in the tibialis anterior. Exp Brain Res 1997; 114: 117–23

    Article  PubMed  CAS  Google Scholar 

  211. Hannerz J. Discharge properties of motor units in relation to recruitment order in voluntary contraction. Acta Physiol Scand 1974; 91 (3): 374–85

    Article  PubMed  CAS  Google Scholar 

  212. Zehr EP, Sale DG. Ballistic movement: motor control and muscle activation. Can J Appl Physiol 1994; 19: 363–78

    Article  PubMed  CAS  Google Scholar 

  213. Moritani T. Motor unit and motorneurone excitability during explosive movement. In: Komi PV, editor. Strength and power in sport. Oxford: Blackwell Science, 2003: 27–49

    Chapter  Google Scholar 

  214. Miller RG, Mirka A, Maxfield M. Rate of tension development in isometric contractions of a human handmuscle. Exp Neurol 1981; 72: 267–85

    Article  Google Scholar 

  215. Cracraft JD, Petajan JH. Effect of muscle training on the pattern of firing of single motor units. Am J Phys Med 1977; 56: 183–93

    PubMed  CAS  Google Scholar 

  216. Leong B, Kamen G, Patten C, et al. Maximal motor unit discharge rates in the quadriceps muscles of older weightlifters. Med Sci Sports Exerc 1999; 31: 1638–44

    Article  PubMed  CAS  Google Scholar 

  217. Patten C, Kamen G, Rowland DM. Adaptations in maximal motor unit discharge rate to strength training inyoung and older adult. Muscle Nerve 2001; 24: 542–50

    Article  PubMed  CAS  Google Scholar 

  218. Kamen G, Knight CA. Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci 2004; 59 (12): 1334–8

    Article  PubMed  Google Scholar 

  219. Kamen G, Knight CA, Laroche DP, et al. Resistance training increases vastus lateralis motor unit firing rates inyoung and old adults [letter]. Med Sci Sports Exerc 1998; 30 Suppl.: S337

    Google Scholar 

  220. Saplinskas JS, Chobotas MA, Yashchaninas II. The time of completed motor acts and impulse activity of single motorunits according to the training level and sport specializationof tested persons. Electromyogr Clin Neurophysiol 1980; 20: 529–39

    PubMed  CAS  Google Scholar 

  221. Milner-Brown HS, Stein RB, Lee RG. Synchronization of human motor units: possible roles of exercise and supraspinalreflexes. Electroencephalogr Clin Neurophysiol 1975; 38 (3): 245–54

    Article  PubMed  CAS  Google Scholar 

  222. Semmler JG, Enoka RM. Neural contributions to the changes in muscle strength. In: Zatsiorsky VM, editor. Biomechanics in sport: the scientific basis of performance. Oxford: Blackwell Science, 2000: 3–20

    Google Scholar 

  223. Semmler JG. Motor unit synchronization and neuromuscular performance. Exerc Sport Sci Rev 2002; 30 (1): 8–14

    Article  PubMed  Google Scholar 

  224. Mellor R, Hodges P. Motor unit synchronization between medial and lateral vasti muscles. Clin Neurophysiol 2005; 116 (7): 1585–95

    Article  PubMed  Google Scholar 

  225. Lind AR, Petrofsky JS. Isometric tension from rotary stimulation of fast and slow cat muscle. Muscle Nerve 1978; 1: 213–8

    Article  PubMed  CAS  Google Scholar 

  226. Rack PM, Westbury DR. The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J Physiol 1969; 204: 443–60

    PubMed  CAS  Google Scholar 

  227. Semmler JG, Nordstrom MA. Motor unit discharge and force tremor in skill- and strength-trained individuals. Exp Brain Res 1998; 119 (1): 27–38

    Article  PubMed  CAS  Google Scholar 

  228. Yue G, Fuglevand AJ, Nordstrom MA, et al. Limitations of the surface electromyography technique for estimatingmotor unit synchronization. Biol Cybern 1995; 73 (3): 223–33

    Article  PubMed  CAS  Google Scholar 

  229. Behm DG. Neuromuscular implications and applications of resistance training. J Strength Cond Res 1995; 9 (4): 264–74

    Google Scholar 

  230. Ostering LR, Hamill J, Corcos DM, et al. EMG patterns accompanying isokinetic exercise under varying speed andsequencing conditions. Am J Phys Med 1984; 63: 289–97

    Google Scholar 

  231. Gordon J, Ghez C. EMG patterns in antagonist muscles during isometric contractions in man: relation to responsedynamics. Exp Brain Res 1984; 55: 167–71

    Article  PubMed  CAS  Google Scholar 

  232. Karst G, Hazan Z. Antagonist muscle activity during forearm movements under varying kinematic and loadingconditions. Exp Brain Res 1987; 67: 391–401

    Article  PubMed  CAS  Google Scholar 

  233. Baratta R, Solomonow M, Zhou BH, et al. Muscular coactivation: the role of the antagonist musculature inmaintaining knee stability. Am J Sports Med 1988; 16 (2): 113–22

    Article  PubMed  CAS  Google Scholar 

  234. Aagaard P, Simonsen EB, Andersen JL, et al. Antagonist muscle coactivation during isokinetic knee extension. Scand J Med Sci Sports 2000; 10 (2): 58–67

    Article  PubMed  CAS  Google Scholar 

  235. Kellis E, Baltzopoulos V. The effects of antagonist moment on the resultant knee joint moment during isokinetictesting of the knee extensors. Eur J Appl Physiol Occup Physiol 1997; 76 (3): 253–9

    Article  PubMed  CAS  Google Scholar 

  236. Milner TE, Cloutier C, Leger AB, et al. Inability to activate muscles maximally during cocontraction and the effect ofjoint stiffness. Exp Brain Res 1995; 107: 293–305

    Article  PubMed  CAS  Google Scholar 

  237. Carpentier A, Duchateau J, Hainaut K. Velocity-dependent muscle strategy during plantarflexion in humans. J Electromyogr Kinesiol 1996; 6: 1–11

    Article  Google Scholar 

  238. Fitts RH. The cross-bridge cycle and skeletal muscle fatigue. J Appl Physiol 2008; 104 (2): 551–8

    Article  PubMed  CAS  Google Scholar 

  239. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mecanisms. Physiol Rev 2008; 88 (1): 287–332

    Article  PubMed  CAS  Google Scholar 

  240. Karatzaferi C, Franks-Skiba K, Cooke R. Inhibition of shortening velocity of skinned skeletal muscle fibers inconditions that mimic fatigue. Am J Physiol Regul Integr Comp Physiol 2008; 294: R948–55

    Article  PubMed  CAS  Google Scholar 

  241. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med 2005; 35 (4): 339–61

    Article  PubMed  Google Scholar 

  242. Kraemer WJ, Ratamess NA. Endocrine responses and adaptations to strength and power training. In: Komi PV, editor. Strength and power in sport. Oxford: Blackwell Scientific Publications, 1992g285

    Google Scholar 

  243. Hamdi MM, Mutungi G. Dihydrotestosterone activates the MAPK pathway and modulates maximum isometricforce through the EGF receptor in isolated intact mouseskeletal muscle fibres. J Physiol 2010; 588 (3): 511–25

    Article  PubMed  CAS  Google Scholar 

  244. De Ruiter CJ, Jones DA, Sargeant AJ, et al. Temperature effect on the rates of isometric force development and relaxationin the fresh and fatigued human adductor pollicismuscle. Exp Physiol 1999; 84: 1137–50

    Article  PubMed  Google Scholar 

  245. Ranatunga KW. Temperature-dependence of shortening velocity and rate of isometric tension development in ratskeletal muscle. J Physiol 1985; 329: 465–83

    Google Scholar 

  246. De Ruiter CJ, De Haan A. Temperature effect on the force/velocity relationship of the fresh and fatigued humanadductor pollicis muscle. Pflügers Arch 2000; 440: 163–70

    PubMed  Google Scholar 

  247. Rall JA, Woledge RC. Influence of temperature on mechanics and energetics of muscle contraction. Am J Physiol 1990; 259: R197–203

    Google Scholar 

  248. Bennett AF. Thermal dependence of muscle function. Am J Physiol 1984; 247: R217–29

    PubMed  CAS  Google Scholar 

  249. Ferretti G. Cold and muscle performance. Int J Sports Med 1992; 13 Suppl.1: 185S–92S

    Article  Google Scholar 

Download references

Acknowledgements

The authors have no potential conflicts of interest to disclose and no funding was received for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prue Cormie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cormie, P., McGuigan, M.R. & Newton, R.U. Developing Maximal Neuromuscular Power. Sports Med 41, 17–38 (2011). https://doi.org/10.2165/11537690-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11537690-000000000-00000

Keywords

Navigation