Skip to main content
Log in

Medial Tibial Stress Syndrome

A Critical Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Medial tibial stress syndrome (MTSS) is one of the most common leg injuries in athletes and soldiers. The incidence of MTSS is reported as being between 4% and 35% in military personnel and athletes. The name given to this condition refers to pain on the posteromedial tibial border during exercise, with pain on palpation of the tibia over a length of at least 5 cm. Histological studies fail to provide evidence that MTSS is caused by periostitis as a result of traction. It is caused by bony resorption that outpaces bone formation of the tibial cortex. Evidence for this overloaded adaptation of the cortex is found in several studies describing MTSS findings on bone scan, magnetic resonance imaging (MRI), high-resolution computed tomography (CT) scan and dual energy x-ray absorptiometry.

The diagnosis is made based on physical examination, although only one study has been conducted on this subject. Additional imaging such as bone, CT and MRI scans has been well studied but is of limited value. The prevalence of abnormal findings in asymptomatic subjects means that results should be interpreted with caution.

Excessive pronation of the foot while standing and female sex were found to be intrinsic risk factors in multiple prospective studies. Other intrinsic risk factors found in single prospective studies are higher body mass index, greater internal and external ranges of hip motion, and calf girth. Previous history of MTSS was shown to be an extrinsic risk factor.

The treatment of MTSS has been examined in three randomized controlled studies. In these studies rest is equal to any intervention. The use of neoprene or semi-rigid orthotics may help prevent MTSS, as evidenced by two large prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table II
Table III
Table III
Table IV
Table V
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clanton TO, Solcher BW. Chronic leg pain in the athlete. Clin Sports Med 1994 Oct; 13 (4): 743–59

    PubMed  CAS  Google Scholar 

  2. Andrish JT, Bergfeld JA, Walheim J. A prospective study on the management of shin splints. J Bone Joint Surg Am 1974 Dec; 56A (8): 1697–700

    Google Scholar 

  3. Bennett JE, Reinking MF, Pluemer B, et al. Factors contributing to the development of medial tibial stress syndrome in high school runners. Orthop Sports Phys Ther 2001 Sep; 31 (9): 504–10

    CAS  Google Scholar 

  4. Yates B, White S. The incidence and risk factors in the development of medial tibial stress syndrome among naval recruits. Am J Sports Med 2004 Apr-May; 32 (3): 772–80

    Article  PubMed  Google Scholar 

  5. Arendt EA, Griffiths H. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high performance athletes. Clin Sports Med 1997 Apr; 16 (2): 291–306

    Article  PubMed  CAS  Google Scholar 

  6. Lassus J, Tulikoura I, Konttinen Y, et al. Bone stress injuries of the lower extremity. Acta Orthop Scand 2002 Jun; 73 (3): 359–68

    Article  PubMed  Google Scholar 

  7. Devas MB. Stress fracture of the tibia in athletes or “shin soreness”. J Bone Joint Surg Br 1958 May; 40B (2): 227–39

    Google Scholar 

  8. Clement DB. Tibial stress syndrome in athletes. J Sports Med 1974 Mar-Apr; 2 (2): 81–5

    Article  PubMed  CAS  Google Scholar 

  9. Puranen J. The medial tibial syndrome: exercise ischaemia in the medial fascial compartment of the leg. J Bone Joint Surg Br 1974 Nov; 56-B (4): 712–5

    PubMed  CAS  Google Scholar 

  10. Mubarak SJ, Gould RN, Lee YF, et al. The medial tibial stress syndrome: a cause of shin splints. Am J Sports Med 1982 Jul-Aug; 10 (4): 201–5

    Article  PubMed  CAS  Google Scholar 

  11. Slocum DB. The shin splints syndrome: medical aspects and differential diagnosis. Am J Surg 1967 Dec; 114 (6): 875–81

    Article  PubMed  CAS  Google Scholar 

  12. Devas MB. Shin splints, or stress fractures of the metacarpal bone in horses, and shin soreness, or stress fractures of the tibia, in man. J Bone Joint Surg Br 1967 May; 49 (2): 310–3

    PubMed  CAS  Google Scholar 

  13. American Medical Association. Standard nomenclature of athletic injuries presented by subcommittee on classification of sports injuries [abstract]. Chicago (IL): AMA, 1966: 122

    Google Scholar 

  14. Detmer DE. Chronic shin splints: classification and management of medial tibial stress syndrome. Sports Med 1986 Nov-Dec; 3 (6): 436–46

    Article  PubMed  CAS  Google Scholar 

  15. Institute for Quality and Healthcare. Indeling van methodologische kwaliteit van individuele studies: 2006 Jan [online]. Available from URL: http://www.cbo.nl/product/richtlijnen/handleiding_ebro/article20060207153532/view [Accessed 2009 May 12]

    Google Scholar 

  16. Holder LE, Michael RH. The specific scintigraphic pattern of “shin splints in the lower leg”: concise communication. J Nucl Med 1984 Aug; 25 (8): 865–9

    PubMed  CAS  Google Scholar 

  17. Chisin R, Milgrom C, Giladi M, et al. Clinical significance of nonfocal findings in suspected tibial stress fractures. Clin Orthop Relat Res 1987 Jul; 220: 200–5

    PubMed  Google Scholar 

  18. Batt ME, Ugalde V, Anderson MW, et al. A prospective controlled study of diagnostic imaging for acute shin splints. Med Sci Sports Exerc 1998 Nov; 30 (11): 1564–71

    Article  PubMed  CAS  Google Scholar 

  19. Gaeta M, Minutoli F, Scribano E, et al. CT and MRI imaging findings in athletes with early tibial stress injuries: comparison of bone scintigraphy findings and emphasis on cortical abnormalities. Radiology 2005 May; 235 (2): 553–61

    Article  PubMed  Google Scholar 

  20. Gaeta M, Minutoli F, Vinci S, et al. High resolution CT grading of tibial stress reactions in distance runners. AJR 2006 Sep; 187 (3): 789–93

    Article  PubMed  Google Scholar 

  21. Fredericson M, Gabrielle Bergman A, Hoffman KL, et al. Tibial stress reaction in runners: correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 1995 Jul-Aug; 23 (4): 472–81

    Article  PubMed  CAS  Google Scholar 

  22. Arendt EA, Agel J, Heikes C, et al. Stress injuries to bone in college athletes: a retrospective review of experience at a single institution. Am J Sports Med 2003 Nov-Dec; 31 (6): 959–68

    PubMed  Google Scholar 

  23. Rupani HD, Holder LE, Espinola DA, et al. Three-phase radionuclide bone imaging in sports medicine. Radiology 1985 Jul; 156 (1): 187–96

    PubMed  CAS  Google Scholar 

  24. Nielsen M, Hansen K, Holmer P, et al. Tibial peristeal reaction in soldiers: a scintigraphic study of 29 cases of lower leg pain. Acta Orthop Scand 1991 Dec; 62 (6): 531–4

    Article  PubMed  CAS  Google Scholar 

  25. Anderson MW, Ugalde V, Batt M, et al. Shin splints: MR appearance in a preliminary study. Radiology 1997 Jul; 204 (1): 177–80

    PubMed  CAS  Google Scholar 

  26. Matilla KT, Komu MES, Dahlstrom S, et al. Medial tibial pain: a dynamic contrast-enhanced MRI study. Magn Reson Imaging 1999 Sep; 17 (7): 947–54

    Article  Google Scholar 

  27. Aoki Y, Yasuda K, Tohyama H, et al. Magnetic resonance imaging in stress fractures and shin splints. Clin Orthop Relat Res 2004 Apr; 421: 260–7

    Article  PubMed  Google Scholar 

  28. Delacerda FG. A study of anatomical factors involved in shin splints. J Orthop Sports Phys Ther 1980 Fall; 2 (2): 55–9

    PubMed  CAS  Google Scholar 

  29. Burne SG, Khan KM, Boudville PB, et al. Risk factors associated with exertional tibial pain: a twelve months prospective clinical study. Br J Sports Med 2004 Aug; 38(4): 441–5

    Article  PubMed  CAS  Google Scholar 

  30. Plisky MS, Rauh MJ, Heiderscheit B, et al. Medial tibial stress syndrome in high school cross-country runners: incidence and risk factors. J Orthop Sports Phys Ther 2007 Feb; 37 (2): 40–7

    Article  PubMed  Google Scholar 

  31. Hubbard TJ, Carpenter EM, Cordova ML. Contributing factors to medial tibial stress syndrome; a prospective investigation. Med Sci Sports Exer 2009 Mar; 41 (3): 490–6

    Article  Google Scholar 

  32. Gehlsen GM, Seger A. Selected measures of angular displacement, strength and flexibility in subjects with and without shin splints. Res Q Excerc Sport 1980 Oct; 51 (3): 478–85

    CAS  Google Scholar 

  33. Viitasalo JK, Kvist M. Some biomechanical aspects of the foot and ankle in athletes with and without shin splints. Am J Sports Med 1983 May-Jun; 11 (3): 125–30

    Article  PubMed  CAS  Google Scholar 

  34. Sommer HM, Vallentyne SW. Effect of foot posture on the incidence of medial tibial stress syndrome. Med Sci Sports Exerc 1995 Jun; 27 (6): 800–4

    PubMed  CAS  Google Scholar 

  35. Madeley LT, Munteanu SE, Bonanno DR. Endurance of the ankle joint plantar flexor muscles in athletes with medial tibial stress syndrome: a case-control study. J Sci Med Sport 2007 Dec; 10 (6): 356–62

    Article  PubMed  Google Scholar 

  36. Tweed JL, Avil SJ, Campbell JA. Biomechanical risk factors in the development of medial tibial stress syndrome indistance runners. J Am Podiatr Med Assoc 2008 Nov-Dec; 98 (6): 436–44

    PubMed  Google Scholar 

  37. Bandholm T, Boysen L, Haugaard S, et al. Foot medial longitudinal arch deformation during quiet standing and gait in subjects with medial tibial stress syndrome. J Foot Ankle Surg 2008 Mar-Apr; 47 (2): 89–95

    Article  PubMed  Google Scholar 

  38. Taunton JE, Ryan MB, Clement DB. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med 2002 Apr; 36 (2): 95–101

    Article  PubMed  CAS  Google Scholar 

  39. Verhagen AP, de Vet HCW, de Bie RA, et al. The Delphi list: a criteria list for quality assessment of randomised clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol 1998 Dec; 51 (12): 1235–41

    Article  PubMed  CAS  Google Scholar 

  40. Nissen LR, Astvad K, Madsen L. Low-energy laser treatment of medial tibial stress syndrome. Ugeskr Laeger 1994 Dec; 156 (49): 7329–31

    PubMed  CAS  Google Scholar 

  41. Johnston E, Flynn T, Bean M, et al. A randomised controlled trial of a leg orthosis versus traditional treatment for soldiers with shin splints: a pilot study. Mil Med 2006 Jan; 171 (1): 40–4

    PubMed  Google Scholar 

  42. Bensel CK, Kish RN. Lower extremity disorders among men and women in army basic training and effects of two types of boots. Natick (MA): United States Army Natick Research & Development Laboratories, 1983

    Google Scholar 

  43. Bensel CK. Wear test of boot inserts: memorandum for the record. Natick (MA): United States Army Natick Research & Development Laboratories, 1986: 1–8

    Google Scholar 

  44. Schwellnus MP, Jordaan G, Noakes TD. Prevention of common overuse injuries by the use of shock absorbing insoles. Am J Sports Med 1990 Nov-Dec; 18 (6): 636–41

    Article  PubMed  CAS  Google Scholar 

  45. Schwellnus MP, Jordaan G. Does calcium supplementation prevent bone stress injuries? A clinical trial. Int J Sports Nutr 1992 Jun; 2 (2): 165–74

    CAS  Google Scholar 

  46. Pope RD, Herbert RP, Kirwan JD, et al. A randomised trial of preexercise stretching for prevention of lower limb injury. Med Sci Sports Exer 2000 Feb; 32 (2): 271–7

    Article  CAS  Google Scholar 

  47. Larsen K, Weidich F, LeBoeuf-Yde C. Can custom-made biomechanic shoe orthoses prevent problems in the back and lower extremities? a randomised controlled intervention trial of 146 military conscripts. J Manipulative Physiol Ther 2002 Jun; 25 (5): 326–31

    Article  PubMed  Google Scholar 

  48. Brushöy C, Larsen K, Albrecht-Beste E, et al. Prevention of overuse injuries by a concurrent exercise program in subjects exposed to an increase in training load; a randomized controlled trial of 1020 army recruits. Am J Sports Med 2008 Apr; 36 (4): 663–70

    Article  Google Scholar 

  49. Michael RH, Holder LE. The soleus syndrome: a cause of medial tibial stress syndrome (shin splints). Am J Sports Med 1985 Mar-Apr; 13 (2): 87–94

    Article  PubMed  CAS  Google Scholar 

  50. Saxena A, O’Brien T, Bruce D. Anatomic dissection of the tibialis posterior muscle and its correlation to the medial tibial stress syndrome. J Foot Surg 1990 Mar-Apr; 29 (2): 105–8

    PubMed  CAS  Google Scholar 

  51. Beck BR, Osterig LR, Oregon E. Medial tibial stress syndrome: the location of muscles in the leg in relation to symptoms. J Bone Joint Surg Am 1994 Jul; 76 (7): 1057–61

    PubMed  CAS  Google Scholar 

  52. Garth WP, Miller ST. Evaluation of claw toe deformity, weakness of the foot intrinsics, and posteromedial shin pain. Am J Sports Med 1989 Nov-Dec; 17 (6): 821–7

    Article  PubMed  Google Scholar 

  53. Bouché RT, Johnson CH. Medial tibial stress syndrome (tibial fasciitis): a proposed pathomechanical model involving fascial traction. J Am Podiatr Med Assoc 2007 Jan-Feb; 97 (1): 31–6

    PubMed  Google Scholar 

  54. Hayes WC. Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk. In: Mow VC, Hayes WC, editors. Basic orthopaedic biomechanics. New York: Raven Press, 1991: 93–142

    Google Scholar 

  55. Goodship AE, Lanyon LE, McFie H. Functional adaptation of bone to increased stress. J Bone Joint Surg Am 1979 Jun; 61 (4): 539–46

    PubMed  CAS  Google Scholar 

  56. Beck BR. Tibial stress injuries: an aetiological review for the purposes of guiding management. Sports Med 1998 Oct; 26 (4): 265–79

    Article  PubMed  CAS  Google Scholar 

  57. Judex S, Gross T, Zernicke RF. Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton. J Bone Min Res 1997 Oct; 12 (10): 1737–45

    Article  CAS  Google Scholar 

  58. Gross TS, Edwards J, McLeod KJ, et al. Strain gradients correlate with sites of periosteal bone formation. J Bone Min Res 1997 Jun; 12 (6): 982–8

    Article  CAS  Google Scholar 

  59. Milgrom C, Giladi M, Simkin A, et al. The area moment of inertia of the tibia: a risk factor for stress fractures. J Biomech 1989; 22 (11-12): 1243–8

    Article  PubMed  CAS  Google Scholar 

  60. Cordey J, Gautier E. Strain gauges used in the mechanical testing of bones: part I, theoretical and technical aspects. Int J Care Inj 1999; 30 Suppl. 1; A7–13

    Google Scholar 

  61. Frost HM. From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec 2001 Apr; 262 (4): 398–419

    Article  PubMed  CAS  Google Scholar 

  62. Frost HM. A 2003 update of bone physiology and Wolff’s law for clinicians. Angle Orthod 2004 Feb; 74 (1): 3–15

    PubMed  Google Scholar 

  63. Frost HM. From Wolff’s law to the mechanostat: a new “face” of physiology. J Orthop Sci 1998; 3 (5): 282–6

    Article  PubMed  CAS  Google Scholar 

  64. Forwood MR, Turner CH. The response of rat tibiae to incremental bouts of mechanical loading: a quantum concept for bone formation. Bone 1994 Nov-Dec; 15 (6): 603–9

    Article  PubMed  CAS  Google Scholar 

  65. Franklyn M, Oakes B, Field B, et al. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes. Am J Sports Med 2008 Jun; 36 (6): 1179–89

    Article  PubMed  Google Scholar 

  66. Paul IL, Murno MB, Abernethy PJ, et al. Musculo-skeletal shock absorption: relative contribution of bone and soft tissues at various frequencies. J Biomech 1978; 11 (5): 237–9

    Article  PubMed  CAS  Google Scholar 

  67. Radin EL. Role of muscles in protecting athletes from injury. Acta Med Scand Suppl 1986; 711: 143–7

    PubMed  CAS  Google Scholar 

  68. Winter DA. Moments of force and mechanical power in jogging. J Biomech 1983; 16 (1): 91–7

    Article  PubMed  CAS  Google Scholar 

  69. Hill DB. Production and absorption of work by muscle. Science 1960 Mar; 131 (3404): 897–903

    Article  PubMed  CAS  Google Scholar 

  70. Milgrom C, Radeva-Petrova DR, Finestone A. The effect of muscle fatigue on in vivo tibial strains. J Biomech 2007; 40 (4): 845–50

    Article  PubMed  Google Scholar 

  71. Bhatt R, Lauder I, Finlay DB, et al. Correlation of bone scintigraphy and histological findings in medial tibial syndrome. Br J Sports Med 2000 Feb; 34 (1): 49–53

    Article  PubMed  CAS  Google Scholar 

  72. Johnell O, Rausing A, Wendeberg B, et al. Morphological bone changes in shin splints. Clin Orthop Relat Res 1982 Jul; 167: 180–4

    PubMed  Google Scholar 

  73. Bonewald LF. Mechanosensation and transduction in osteocytes. Bone Key-Osteovision 2006 Oct; 3 (10): 7–15

    Article  Google Scholar 

  74. Han Y, Cowen SC, Schaffler MB, et al. Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci USA 2004 Nov 23; 101 (47): 16689–94

    Article  PubMed  CAS  Google Scholar 

  75. Nicolella DP, Moravits DE, Gale AM. Osteocyte lacunae tissue strain in cortical bone. J Biomech 2006; 39 (9): 1735–43

    Article  PubMed  Google Scholar 

  76. Noble B. Microdamage and apoptosis. Eur J Morphol 2005 Jan-Feb; 42 (1-2): 91–8

    Article  PubMed  Google Scholar 

  77. Magnusson HI, Westlin NE, Nyqvist F, et al. Abnormally decreased regional bone density in athletes with medial tibial stress syndrome. Am J Sports Med 2001 Nov-Dec; 29 (6): 712–5

    PubMed  CAS  Google Scholar 

  78. Magnusson HI, Ahlborg HG, Karlsson C, et al. Low regional tibial bone density in athletes normalizes after recovery from symptoms. Am J Sports Med 2003 Jul-Aug; 31 (4): 596–600

    PubMed  Google Scholar 

  79. Kortebein PM, Kaufman KR, Basford JR, et al. Medial tibial stress syndrome. Med Sci Sports Exerc 2000 Mar; 32Suppl. 3: S27–33

    Google Scholar 

  80. Andrish JT. The shin splint syndrome. In: De Lee JC, Drez D, editors. Orthopaedic sports medicine. 2nd ed. Amsterdam: Elsevier, 2003: chapter 29, 2155–8

    Google Scholar 

  81. Edwards PH, Wright ML, Hartman JF. A practical approach for the differential diagnosis of chronic leg pain in the athlete. Am J Sports Med 2005 Aug; 33(8): 1241–9

    Article  PubMed  Google Scholar 

  82. Puranen J, Alavaikko A. Intracompartmental pressure increase on exertion in patients with chronic compartment syndrome. J Bone Joint Surg Am 1981 Oct; 63 (8): 1304–9

    PubMed  CAS  Google Scholar 

  83. Wallensten R, Eklund B. Intramuscular pressures in exercise-induced lower leg pain. Int J Sports Med 1984 Feb; 5 (1): 31–5

    Article  PubMed  CAS  Google Scholar 

  84. D’Ambrosia RD, Zelis RF, Chuinard RG, et al. Interstitial pressure measurements in the anterior and posterior compartments in athletes with shin splints. Am J Sports Med 1977 May-Jun; 5 (3): 127–31

    Article  PubMed  Google Scholar 

  85. Greaney RB, Gerber FH, Laughlin RL, et al. Distribution and natural history of stress fractures in U.S. Marine recruits. Radiology 1983 Feb; 146 (2): 339–46

    PubMed  CAS  Google Scholar 

  86. Kiuru MJ, Pihlajamaki HK, Hietanen HJ, et al. MR imaging, bone scintigraphy and radiography in bone stress injuries of the pelvis and lower extremity. Acta Radiol 2002; 43: 207–12

    Article  PubMed  CAS  Google Scholar 

  87. Boden BP, Osbahr DC, Jimenez C. Low-risk stress fractures. Am J Sports Med 2001 Jan-Feb; 29 (1): 100–11

    PubMed  CAS  Google Scholar 

  88. Brukner P. Exercise related lower leg pain: bone. Med Sci Sports Exerc 2000 Mar; 32 Suppl. 3: S15–26

    Google Scholar 

  89. Zwas ST, Elkanovitch R, Frank G. Interpretation and classification of bone scintigraphic findings in stress fractures. J Nucl Med 1987 Apr; 28 (4): 452–7

    PubMed  CAS  Google Scholar 

  90. Matin P. Basic principles of nuclear medicine techniques for detection and evaluation of trauma and sports medicine injuries. Semin Nucl Med 1988 Apr; 18 (2): 90–112

    Article  PubMed  CAS  Google Scholar 

  91. Roub LW, Gumerman LW, Hanley EN, et al. Bone stress: a radionuclide imaging perspective. Radiology 1979 Aug; 132 (2): 431–8

    PubMed  CAS  Google Scholar 

  92. Drubach LA, Connoly LP, D’Hemecourt PA, et al. Assessment of the clinical significance of asymptomatic lower extremity uptake abnormality in young athletes. J Nucl Med 2001 Feb; 42 (2): 209–12

    PubMed  CAS  Google Scholar 

  93. Bergman AG, Fredericsson M, Ho C, et al. Asymptomatic tibial stress reactions: MRI detection and clinical follow-up in distance runners. AJR 2004 Sep; 183 (3): 635–8

    PubMed  Google Scholar 

  94. Redmond AC, Crosbie J, Ouvrier RA. Development and validation of a novel rating system for scoring standing foot posture: the Foot Posture Index. Clin Biomech 2006 Jan; 21 (1): 89–98

    Article  Google Scholar 

  95. Keenan AM, Redmond AC, Horton M, et al. The Foot Posture Index: Rasch analysis of a novel, foot-specific outcome measure. Arch Phys Med Rehabil 2007 Jan; 88(1): 88–93

    Article  PubMed  Google Scholar 

  96. Bamman MM, Newcomer BR, Larson-Meyer DE, et al. Evaluation of the strength-size relationship in vivo using various muscle size indices. Med Sci Sports Exerc 2000 Jul; 32 (7): 1307–13

    Article  PubMed  CAS  Google Scholar 

  97. Morris RH. Medial tibial syndrome: a treatment protocol using electric current. Chiropractic Sports Med 1991; 5 (1): 5–8

    Google Scholar 

  98. Schulman RA. Tibial shin splints treated with a single acupuncture session: case report and review of the literature. J Am Med Acupuncture 2002; 13 (1): 7–9

    Google Scholar 

  99. Järvinnen M, Niittymaki S. Results of the surgical treatment of the medial tibial stress syndrome in athletes. Int J Sports Med 1989 Feb; 10 (1): 55–7

    Article  PubMed  Google Scholar 

  100. Holen KJ, Engebretsen L, Grondvedt T, et al. Surgical treatment of medial tibial stress syndrome (shin splints) by fasciotomy of the superficial posterior compartment ofthe leg. Scand J Med Sci Sports 1995 Feb; 5 (1): 40–3

    Article  PubMed  CAS  Google Scholar 

  101. Wallenstein R. Results of fasciotomy in patients with medial tibial stress syndrome or chronic anterior compartment syndrome. J Bone Joint Surg Am 1983 Dec; 65 (9): 1252–5

    Google Scholar 

  102. Abramowitz AJ, Schepsis A, McArthur C. The medial tibial stress syndrome: the role of surgery. Orthop Rev 1994 Nov; 23 (11): 875–81

    PubMed  CAS  Google Scholar 

  103. Yates B, Allen MJ, Barnes MR. Outcome of surgical treatment of medial tibial stress syndrome. J Bone Joint Surg Am 2003 Oct; 85 (10): 1974–80

    PubMed  Google Scholar 

  104. O’Brien FJ, Hardiman DA, Hazenberg JG, et al. The behaviour of microcracks in compact bone. Eur J Morphol 2005 Feb-Apr; 42 (1-2): 71–9

    Article  PubMed  Google Scholar 

  105. Raesi Najafi A, Arshi AR, Eslami MR, et al. Micro-mechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties. J Biomech 2007; 40 (12): 2788–95

    Article  Google Scholar 

  106. Wang X, Masse DB, Leng H, et al. Detection of trabecular bone microdamage by micro-computed tomography. J Biomech 2007; 40 (15): 3397–403

    Article  PubMed  Google Scholar 

  107. Cole GK, Nigg BM, van den Bogert AJ. Transfer of eversion to internal leg rotation in running [abstract]. J Biomech 1994; 27 (6): 659. Presented at International Society of Biomechanics XIV Congress 1993

    Article  Google Scholar 

  108. Hintermann B, Nigg BM. Pronation in runners: implications for injuries. Sports Med 1998 Sep; 26 (3): 169–76

    Article  PubMed  CAS  Google Scholar 

  109. DeSouza MJ, Williams NI. Physiological aspects and clinical sequelae of energy deficiency and hypoestrogenism in exercising women. Hum Reprod Update 2004 Sep-Oct; 10(5): 433–48

    Article  PubMed  Google Scholar 

  110. DeSouza MJ, Williams NI. Beyond hypoestrogenism in amenorrheic athletes: energy deficiency as a contributing factor for bone loss. Curr Sports Med Rep 2005 Feb; 4 (1): 38–44

    PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review. The authors would like to acknowledge the following persons who made substantial contributions: Belinda Beck, Griffith University, Brisbane, QLD, Australia; Viviane Ugalde, Neuromuscular Center of the Cascades, Bend, OR, USA; Fabio Minutoli, University of Messina, Messina, Italy; Stephen Thacker, Centers for Disease Control and Prevention, Atlanta, GA, USA; Yoshimitsu Aoki, Hokushin Orthopaedic Hospital, Sapporo, Japan; Jack Andrish, Cleveland Clinic, Cleveland, OH, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten H. Moen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moen, M.H., Tol, J.L., Weir, A. et al. Medial Tibial Stress Syndrome. Sports Med 39, 523–546 (2009). https://doi.org/10.2165/00007256-200939070-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200939070-00002

Keywords

Navigation