Skip to main content

Advertisement

Log in

Oxidative Stress

Relationship with Exercise and Training

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Free radicals are reactive compounds that are naturally produced in the human body. They can exert positive effects (e.g. on the immune system) or negative effects (e.g. lipids, proteins or DNA oxidation). To limit these harmful effects, an organism requires complex protection — the antioxidant system. This system consists of antioxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase) and non-enzymatic antioxidants (e.g. vitamin E [tocopherol], vitamin A [retinol], vitamin C [ascorbic acid], glutathione and uric acid). An imbalance between free radical production and antioxidant defence leads to an oxidative stress state, which may be involved in aging processes and even in some pathology (e.g. cancer and Parkinson’s disease). Physical exercise also increases oxidative stress and causes disruptions of the homeostasis. Training can have positive or negative effects on oxidative stress depending on training load, training specificity and the basal level of training. Moreover, oxidative stress seems to be involved in muscular fatigue and may lead to overtraining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Fig. 3
Table II
Table III
Table IV
Table V
Table VI
Table VII
Table VIII
Table IX

Similar content being viewed by others

References

  1. Cooper CE, Vollaard NBJ, Choueiri T, et al. Exercise, free radicals and oxidative stress. Biochem Soc Trans 2002; 30 (2): 280–285

    Article  PubMed  CAS  Google Scholar 

  2. Lachance PA, Nakat Z, Jeong WS. Antioxidants: an integrative approach. Nutrition 2001; 17: 835–838

    Article  PubMed  CAS  Google Scholar 

  3. Golden TR, Hinerfeld DA, Melov S. Oxidative stress and aging: beyond correlation. Aging Cell 2002; 1: 117–123

    Article  PubMed  CAS  Google Scholar 

  4. Thomas MJ. The role of free radicals and antioxidants. Nutrition 2000; 16 (7–8): 716–718

    Article  PubMed  CAS  Google Scholar 

  5. Sen CK. Antioxidant and redox regulation of cellular signaling: introduction. Med Sci Sports Exerc 2001; 33 (3): 368–370

    Article  PubMed  CAS  Google Scholar 

  6. Guilland JC, Penaranda T, Gallet C, et al. Vitamin status of young athletes including the effects of supplementation. Med Sci Sports Exerc 1989; 21 (4): 441–449

    PubMed  CAS  Google Scholar 

  7. Laursen PB. Free radicals and antioxidant vitamins: optimizing the health of the athlete. Strength Cond J 2001; 23 (2): 17–25

    Google Scholar 

  8. McKenzie DC. Markers of excessive exercise. Can J Appl Physiol 1999; 24 (1): 66–73

    Article  PubMed  CAS  Google Scholar 

  9. Petibois C, Cazorla G, Poortmans JR, et al. Biochemical aspects of overtraining in endurance sports. Sports Med 2002; 32 (13): 867–878

    Article  PubMed  Google Scholar 

  10. Jenkins RR. Free radical chemistry: relationship to exercise. Sports Med 1988; 5: 156–170

    Article  PubMed  CAS  Google Scholar 

  11. Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull 1993; 49 (3): 481–493

    PubMed  CAS  Google Scholar 

  12. Rimbach G, Hohler D, Fischer A, et al. Methods to assess free radicals and oxidative stress in biological systems. Arch Tierernahr 1999; 52 (3): 203–222

    Article  PubMed  CAS  Google Scholar 

  13. Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 1999; 27 (11–12): 1173–1181

    Article  PubMed  CAS  Google Scholar 

  14. Giles GI, Jacob C. Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem 2002; 383: 375–388

    Article  PubMed  CAS  Google Scholar 

  15. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 1998; 92: 3007–3017

    PubMed  CAS  Google Scholar 

  16. Leewenburgh C, Hansen PA, Holloszy JO, et al. Hydroxyl radical generation during exercise increases mitochondrial protein oxidation and levels of urinary dityrosine. Free Radic Biol Med 1999; 27 (1–2): 186–192

    Article  Google Scholar 

  17. Fehrenbach E, Northoff H. Free radicals, exercise, apoptosis, and heat shock proteins. Exerc Immunol Rev 2001; 7: 66–89

    PubMed  CAS  Google Scholar 

  18. Aruoma OI. Free radicals, antioxidants and international nutrition. Asia Pac J Clin Nutr 1999; 8 (1): 53–63

    Article  CAS  Google Scholar 

  19. Di Meo S, Venditti P. Mitochondria in exercise-induced oxidative stress. Biol Signals Recept 2001; 10: 125–140

    Article  PubMed  Google Scholar 

  20. Sjodin B, Hellsten Westing Y, et al. Biochemical mechanism for oxygen free radical formation during exercise. Sports Med 1990; 10: 236–254

    Article  PubMed  CAS  Google Scholar 

  21. Jenkins RR, Goldfarb A. Introduction: oxidant stress, aging and exercise. Med Sci Sport Exerc 1993; 25 (2): 210–212

    CAS  Google Scholar 

  22. Clarkson PM. Antioxidants and physical performance. Crit Rev Food Sci Nutr 1995; 35: 131–141

    Article  PubMed  CAS  Google Scholar 

  23. Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1998; 1366 (1–2): 53–67

    PubMed  CAS  Google Scholar 

  24. Nohl H, Jordan W. The mitochondrial site of superoxide formation. Biochem Biophys Res Commun 1986; 138 (2): 533–539

    Article  PubMed  CAS  Google Scholar 

  25. Lenaz G, D’Aurelio M, Merlo Pich M, et al. Mitochondrial bioenergetics in aging. Biochim Biophys Acta 2000; 1459: 397–404

    Article  PubMed  CAS  Google Scholar 

  26. Nohl H, Kozlov AV, Gille L, et al. Cell respiration and formation of reactive oxygen species: facts and artifacts. Biochem Soc Trans 2003; 31 (6): 1308–1311

    Article  PubMed  CAS  Google Scholar 

  27. Servais S, Couturier K, Koubi H, et al. Effect of voluntary exercise on H2O2 release by subsarcolemmal and intermy-ofibrillar mitochondria. Free Radic Biol Med 2003; 35 (1): 25–32

    Article  CAS  Google Scholar 

  28. Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 1980; 191: 421–427

    PubMed  CAS  Google Scholar 

  29. Genova ML, Pich MM, Bernacchia A, et al. The mitochondrial production of reactive oxygen species in relation to aging and pathologies. Ann N Y Acad Sci 2004; 1011: 86–100

    Article  PubMed  CAS  Google Scholar 

  30. Thompson-Gorman SL, Zweier JL. Evaluation of the role of xanthine oxidase in myocardial reperfusion injury. J Biol Chem 1990; 265 (12): 6656–6663

    PubMed  CAS  Google Scholar 

  31. Jackson MJ, O’Farrell S. Free radicals and muscle damage. Br Med Bull 1993; 49 (3): 630–641

    PubMed  CAS  Google Scholar 

  32. Frederiks WM, Bosch KS. The role of xanthine oxidase in ischemia/reperfusion damage of rat liver. Histol Histopathol 1995; 10: 111–116

    PubMed  CAS  Google Scholar 

  33. Goldfarb AH. Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can J Appl Physiol 1999; 24 (3): 249–266

    Article  PubMed  CAS  Google Scholar 

  34. Heunks LMA, Vina J, Van Herwaarden AV, et al. Xanthine oxidase is involved in exercise-induced oxidative stress in chronic obstrutive pulmonary disease. Am J Physiol 1999; 277: R1697–R1704

    PubMed  CAS  Google Scholar 

  35. Gunther MR, Sampath V, Caughey WS. Potential roles of myoglobin autoxidation in myocardial ischemia-reperfusion injury. Free Radic Biol Med 1999; 26 (11–12): 1388–1395

    Article  PubMed  CAS  Google Scholar 

  36. Ames BN, Catchcart R, Schwiers E, et al. Uric acid provides an antioxidant defense in humans against oxidant and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A 1981; 78 (11): 6858–6862

    Article  PubMed  CAS  Google Scholar 

  37. Misra HP, Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 1972; 21: 6960–6962

    Google Scholar 

  38. Wallace JW, Houtchens RA, Maxwell JC, et al. Mechanism of autoxidation for hemoglobins and myoglobins: promotion of superoxide production by protons and anions. J Biol Chem 1982; 257 (9): 4966–4977

    PubMed  CAS  Google Scholar 

  39. Gohil K, Viguie C, Stanley W, et al. Blood glutathion oxidation during human exercise. J Appl Physiol 1988; 64 (1): 115–119

    PubMed  CAS  Google Scholar 

  40. Brantley RE, Smerdon SJ, Wilkinson AJ, et al. The mechanism of autoxidation of myoglobin. J Biol Chem 1993; 268 (10): 6995–7010

    PubMed  CAS  Google Scholar 

  41. Harel S, Kanner J. The generation of ferryl or hydroxyl radicals during interaction of haemproteins with hydrogen peroxide. Free Radic Res Commun 1988; 5 (1): 21–33

    Article  PubMed  CAS  Google Scholar 

  42. Giulivi C, Cadenas E. Heme protein radicals: formation, fate, and biological consequences. Free Radic Biol Med 1998; 24 (2): 269–279

    Article  PubMed  CAS  Google Scholar 

  43. Kelman DJ, DeGray JA, Mason RP. Reaction of myoglobin with hydrogen peroxide forms a peroxyl radical which oxidizes substrates. J Biol Chem 1994; 269 (10): 7458–7463

    PubMed  CAS  Google Scholar 

  44. Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 2000; 72 (S): 637–646

    Google Scholar 

  45. Malm C. Exercise-induced muscle damage and inflammation: fact or fiction. Acta Physiol Scand 2001; 171: 233–239

    Article  PubMed  CAS  Google Scholar 

  46. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996; 10: 709–720

    PubMed  CAS  Google Scholar 

  47. Reid MB. Plasticity in skeletal, cardiac, and smooth muscle. Invited review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 2001; 90: 724–731

    Article  PubMed  CAS  Google Scholar 

  48. Linnane AW, Zhang C, Yarovaya N, et al. Human aging and global function of coenzyme Q10. Ann N Y Acad Sci 2002; 959: 396–411

    Article  PubMed  CAS  Google Scholar 

  49. Andrade FH, Reid MB, Allen DG, et al. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 1998; 509 (2): 565–575

    Article  PubMed  CAS  Google Scholar 

  50. Coombes JS, Powers SK, Rowell B, et al. Effects of vitamin E and α-lipoic acid on skeletal muscle contractile properties. J Appl Physiol 2001; 90: 1424–1430

    PubMed  CAS  Google Scholar 

  51. Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25 (2): 218–224

    PubMed  CAS  Google Scholar 

  52. Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000; 63: 1035–1042

    Article  PubMed  CAS  Google Scholar 

  53. Vasankari TJ, Kujala UM, Vasankari TM, et al. Effects of acute prolonged exercise on serum and LDL oxidation and antioxidants defenses. Free Radic Biol Med 1997; 22 (3): 509–513

    Article  PubMed  CAS  Google Scholar 

  54. Young IS, McEneny J. Lipoprotein oxidation and atherosclerosis. Biochem Soc Trans 2001; 29 (2): 358–362

    Article  PubMed  CAS  Google Scholar 

  55. Morel DW, Hessler JR, Chisolm GM. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 1983; 24: 1070–1076

    PubMed  CAS  Google Scholar 

  56. Ma YS, Stone WL, Leclair IO. The effects of vitamin C and urate on the oxidation kinetics of human low-density lipoprotein. Proc Soc Exp Biol Med 1994; 206: 53–59

    PubMed  CAS  Google Scholar 

  57. Terentis AC, Thomas SR, Burr JA, et al. Vitamin E oxidation in human atherosclerotic lesions. Circ Res 2002; 90 (3): 333–339

    Article  PubMed  CAS  Google Scholar 

  58. Liu ML, Bergholm R, Makimattila S, et al. A marathon run increases the susceptibility of LDL to oxidation in vitro and modifies plasma antioxidants. Am J Physiol 1999; 276 (6): E1083–E1091

    PubMed  CAS  Google Scholar 

  59. Pincemail J, Lecomte J, Castiau J, et al. Evaluation of autoantibodies against oxidized LDL and antioxidant status in top soccer and basketball players after 4 months of competition. Free Radic Biol Med 2000; 28 (4): 559–565

    Article  PubMed  CAS  Google Scholar 

  60. Radak Z, Kaneko T, Tahara S, et al. The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes. Free Radic Biol Med 1999; 27 (1–2): 69–74

    Article  PubMed  CAS  Google Scholar 

  61. Tavazzi B, Di Pierro D, Amorini AM, et al. et al. Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur J Biochem 2000; 267: 684–689

    Article  PubMed  CAS  Google Scholar 

  62. Szweda PA, Friguet B, Szweda LI. Proteolysis, free radicals, and aging. Free Radic Biol Med 2002; 33 (1): 29–36

    Article  PubMed  CAS  Google Scholar 

  63. Packer L. Oxidants, antioxidant nutrients and the athlete. J Sports Sci 1997; 15 (3): 353–363

    Article  PubMed  CAS  Google Scholar 

  64. Renke J, Popadiuk S, Korzon M, et al. Protein carbonyl groups’ content as a useful clinical marker of antioxidant barrier impairment in plasma of children with juvenile chronic arthrisis. Free Radic Biol Med 2000; 29 (2): 101–104

    Article  PubMed  CAS  Google Scholar 

  65. Levine RL. Carbonyl modified proteins in cellular regulation, aging and disease. Free Radic Biol Med 2002; 32 (9): 790–796

    Article  PubMed  CAS  Google Scholar 

  66. Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci 2000; 899: 191–208

    Article  PubMed  CAS  Google Scholar 

  67. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997; 272 (33): 20313–20316

    Article  PubMed  CAS  Google Scholar 

  68. Wallace SS. Biological consequences of free radical-damaged DNA bases. Free Radic Biol Med 2002; 33 (1): 1–14

    Article  PubMed  CAS  Google Scholar 

  69. Dizdaroglu M, Jaruga P, Birincioglu M, et al. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 2002; 32 (11): 1102–1115

    Article  PubMed  CAS  Google Scholar 

  70. Beckman KB, Ames BN. Oxidative decay of DNA. J Biol Chem 1997; 272 (32): 19633–19636

    Article  PubMed  CAS  Google Scholar 

  71. Kasai H. Chemistry-based studies on oxidative DNA damage: formation, repair, and mutagenesis. Free Radic Biol Med 2002; 33 (4): 450–456

    Article  PubMed  CAS  Google Scholar 

  72. Reid MB, Haack KE, Franchek KM, et al. Reactive oxygen in skeletal muscle I: intracellular oxidant kinetics and fatigue invitro. J Appl Physiol 1992; 73 (5): 1797–1804

    PubMed  CAS  Google Scholar 

  73. Tiidus PM. Radical species in inflammation and overtraining. Can J Physiol Pharmacol 1998; 76: 533–538

    Article  PubMed  CAS  Google Scholar 

  74. Powers SK, Lennon SL. Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. Proc Nutr Soc 2000; 58: 1025–1033

    Article  Google Scholar 

  75. McArdle A, Pattwell D, Vasilaki A, et al. Contractile activity-induced oxidative stress: cellular origin and adaptative responses. Am J Physiol 2001; 280: C621–C627

    CAS  Google Scholar 

  76. Dawson B, Henry GJ, Goodman C, et al. Effect of vitamin C and E supplementation on biochemical and ultrastructural indices of muscle damage after 21 km run. Int J Sports Med 2002; 23: 10–15

    Article  PubMed  CAS  Google Scholar 

  77. Coombes JS, Rowell B, Dodd SL, et al. Effects of vitamin E deficiency on fatigue and muscle contractile properties. Eur J Appl Physiol 2002; 87: 272–277

    Article  PubMed  CAS  Google Scholar 

  78. Evans WJ. Vitamin E, vitamin C, and exercise. Am J Clin Nutr 2000; 72 (S): 647–652

    Google Scholar 

  79. Childs A, Jacobs C, Kaminski T, et al. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med 2001; 31 (6): 745–753

    Article  PubMed  CAS  Google Scholar 

  80. Sen CK, Kolosova I, Hanninen O, et al. Inward potassium transport systems in skeletal muscle derived cells are highly sensitive to oxidant exposure. Free Radic Biol Med 1995; 18 (4): 795–800

    Article  PubMed  CAS  Google Scholar 

  81. Radak Z, Pucsok J, Mecseki S, et al. Muscle soreness-induced reduction in force generation is accompanied by increased nitric oxide content and DNA damage in human skeletal muscle. Free Radic Biol Med 1999; 26 (7–8): 1059–1063

    Article  PubMed  CAS  Google Scholar 

  82. Bigard AX. Lesions musculaires induites par l’exercice et surentrainement. Sci Sports 2001; 16: 204–215

    Article  Google Scholar 

  83. Petibois C, Cazorla G, Poortmans JR, et al. Biochemical aspects of overtraining in endurance sports: the metabolism alteration process syndrome. Sports Med 2003; 33 (2): 83–94

    Article  PubMed  Google Scholar 

  84. Dekkers JC, van Doornen LJ, Kemper HC. The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Med 1996; 21 (3): 213–238

    Article  PubMed  CAS  Google Scholar 

  85. Das KC, Lewis-Molock Y, White CW. Elevation of manganese superoxide dismutase gene expression by thioredoxin. Am J Respir Cell Mol Biol 1997; 17: 713–726

    PubMed  CAS  Google Scholar 

  86. Antunes F, Derick H, Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions. Free Radic Biol Med 2002; 33 (9): 1260–1267

    Article  PubMed  CAS  Google Scholar 

  87. Ji LL. Oxidative stress during exercise: implication of antioxidant nutrients. Free Radic Biol Med 1995; 18 (6): 1079–1086

    Article  PubMed  CAS  Google Scholar 

  88. Fuchs J, Weber S, Podda M, et al. HPLC analysis of vitamin E isoforms in human epidermis: correlation with minimal erythema dose and free radical scavenging activity. Free Radic Biol Med 2003; 34 (3): 330–336

    Article  PubMed  CAS  Google Scholar 

  89. Liebler DC, Kling DS, Reed DJ. Antioxidant protection of lipid balayers by α-tocopherol: control of α-tocopherol status and lipid peroxidation by ascorbic acid and glutathione. J Biol Chem 1986; 261: 12144–12149

    Google Scholar 

  90. Mastaloudis A, Leonard SW, Traber MG. Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med 2001; 31 (7): 911–922

    Article  PubMed  CAS  Google Scholar 

  91. Mitmesser SH, Giraud DW, Driskell JA. Dietary and plasma level of carotenoids, vitamin E, vitamin C in a group of young and middle-aged nonsupplemented women and men. Nutr Res 2000; 20 (11): 1537–1546

    Article  CAS  Google Scholar 

  92. Goldfard AH. Antioxidant: role of supplementation to prevent exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25: 232–236

    Google Scholar 

  93. Willcox JK, Catignani GL, Roberts LJ. Dietary flavonoids fail to suppress F2-isoprostane formation in-vivo. Free Radic Biol Med 2002; 34 (7): 795–799

    Article  CAS  Google Scholar 

  94. McBride JM, Kraemer WJ, Triplett-McBride T, et al. Effect of resistance exercise on free radical production. Med Sci Sports Exerc 1998; 30 (1): 67–72

    Article  PubMed  CAS  Google Scholar 

  95. Takanami Y, Iwane H, Kawai Y, et al. Vitamin E, supplementation and endurance exercise. Sports Med 2000; 29 (2): 73–83

    Article  PubMed  CAS  Google Scholar 

  96. Palmer FM, Nieman DC, Henson DA, et al. Influence of vitamin C supplementation on oxidative and salivary IgA changes following an ultramarathon. Eur J Appl Physiol 2003; 89: 100–107

    Article  PubMed  CAS  Google Scholar 

  97. Ashton T, Young IS, Peters JR, et al. Electron spin resonance spectroscopy, exercise, and oxidative stress: an ascorbic acid intervention study. J Appl Physiol 1999; 87 (6): 2032–2036

    PubMed  CAS  Google Scholar 

  98. Chung WY, Chung JKO, Szeto YT, et al. Plasma ascorbic acid: measurement, stability and clinical utility revisited. Clin Biochem 2001; 34: 623–627

    Article  PubMed  CAS  Google Scholar 

  99. Thompson D, Williams C, Garcia-Roves P, et al. Post-exercise vitamin C supplementation and recovery from demanding exercise. Eur J Appl Physiol 2003; 89: 393–400

    Article  PubMed  CAS  Google Scholar 

  100. Ozhogina OA, Kasaikina OT. ß-carotene as an interceptor of free radicals. Free Radic Biol Med 1995; 19 (5): 575–581

    Article  PubMed  CAS  Google Scholar 

  101. Livrea MA, Tesoriere L, Bongiorno A, et al. Contribution of vitamin A to the oxidation resistance of human low density lipoproteins. Free Radic Biol Med 1995; 18 (3): 401–409

    Article  PubMed  CAS  Google Scholar 

  102. Schröder H, Navarro E, Mora J, et al. Effects of α-tocopherol, ß-carotene and ascorbic acid on oxidative, hormonal and enzymatic exercise stress markers in habitual training activity of professional basketball players. Eur J Nutr 2001; 40: 178–184

    Article  PubMed  Google Scholar 

  103. Singh A, Moses FM, Deuster PA. Chronic multivitamin-mineral supplementation does not enhance physical performance. Med Sci Sports Exerc 2001; 24 (6): 726–732

    Google Scholar 

  104. Wedworth SM, Lynch S. Dietary flavonoids in atherosclerosis prevention. Ann Pharmacother 1995; 29 (6): 627–628

    PubMed  CAS  Google Scholar 

  105. Depeint F, Gee JM, Williamson G, et al. Evidence for consistent patterns between flavonoids structures and cellular activities. Proc Nutr Soc 2002; 61 (1): 97–103

    Article  PubMed  CAS  Google Scholar 

  106. Morand C, Crespy V, Manach C, et al. Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol 1998; 275 (44): R212–R219

    PubMed  CAS  Google Scholar 

  107. Cotelle N. Role of flavonoids in oxidative stress. Curr Top Med Chem 2001; 1 (6): 569–590

    Article  PubMed  CAS  Google Scholar 

  108. Arts MJTJ, Haenen GRMM, Wilms LC, et al. Interactions between flavonoids and proteins: effect on the total antioxidant capacity. J Agric Food Chem 2002; 50: 1184–1187

    Article  PubMed  CAS  Google Scholar 

  109. Sen CK, Packer L. Thiol homeostasis and supplements in physical exercise. Am J Clin Nutr 2000; 72: 653S–669S

    PubMed  CAS  Google Scholar 

  110. May JM, Qu Z, Whitesell RR, et al. Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate. Free Radic Biol Med 1996; 20 (4): 543–551

    Article  PubMed  CAS  Google Scholar 

  111. Groussard C, Rannou-Bekono F, Machefer G, et al. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur J Appl Physiol 2003; 89: 14–20

    Article  PubMed  CAS  Google Scholar 

  112. Tessier F, Margaritis I, Richard MJ, et al. Selenium and training effects on the glutathione system and aerobic performance. Med Sci Sports Exerc 1995; 27 (3): 390–396

    PubMed  CAS  Google Scholar 

  113. Svensson M, Ekblom B, Cotgreave I, et al. Adaptative stress response of glutathione and acid uric metabolism in man following controlled exercise and diet. Acta Physiol Scand 2002; 176: 43–56

    Article  PubMed  CAS  Google Scholar 

  114. Schulz JB, Lindenau J, Seyfried J, et al. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 2000; 267: 4904–4911

    Article  PubMed  CAS  Google Scholar 

  115. Shang F, Lu M, Dudek E, et al. Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2. Free Radic Biol Med 2003; 34 (5): 521–530

    Article  PubMed  CAS  Google Scholar 

  116. Serbinova E, Reznick SKAZ, Packer L. Thioctic acid protects against ischemia-reperfusion injury in the isolated langendorff heart. Free Radic Res Commun 1992; 17: 49–58

    Article  PubMed  CAS  Google Scholar 

  117. Scott BC, Aruoma OI, Evans PJ, et al. Lipoic and dihydrolipoic acids as antioxidants: a critical evaluation. Free Radic Res 1994; 20: 119–130

    Article  PubMed  CAS  Google Scholar 

  118. Khanna S, Atalay M, Laaksonen DE, et al. α-lipoic acid supplementation: tissue glutathione homeostasis at rest and after exercise. J Appl Physiol 1999; 86 (4): 1191–1196

    PubMed  CAS  Google Scholar 

  119. Maulik N, Yoshida T, Engelman RM, et al. Dietary coenzyme Q10 supplement renders swine hearts resistant to ischemia-reperfusion injury. Am J Physiol 2000; 278: H1084–H1090

    CAS  Google Scholar 

  120. Witt EH, Reznick AZ, Viguie CA, et al. Exercise, oxidative damage and effects of antioxidant manipulation. J Nutr 1992; 122 (3 Suppl.): 766–773

    PubMed  CAS  Google Scholar 

  121. Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr 2001; 20 (6): 591–598

    PubMed  CAS  Google Scholar 

  122. Crestanello JA, Doliba NM, Babsky AM, et al. Effects of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion. J Surg Res 2002; 102 (2): 221–228

    Article  PubMed  CAS  Google Scholar 

  123. Rosenfelt FL, Pepe S, Linnane A, et al. Coenzyme Q10 protects the aging heart against stress: studies in rats, human tissues, and patients. Ann N Y Acad Sci 2002; 959: 355–359

    Article  Google Scholar 

  124. Braun B, Clarkson PM, Freedson PS, et al. Effects of coenzyme Q10 supplementation on exercise performance, VO2 max, and lipid peroxidation in trained cyclists. Int J Sport Nutr 1991; 1 (4): 353–365

    PubMed  CAS  Google Scholar 

  125. Svensson M, Malm C, Tonkonogi M, et al. Effect of Q10 supplementation on tissue Q10 levels and adenine nucleotide catabolism during high-intensity exercise. Int J Sport Nutr 1999; 9 (2): 166–180

    PubMed  CAS  Google Scholar 

  126. Grootveld M, Halliwell B. Measurement of allantoin and uric acid in human body fluids: a potential index of free-radical reactions in vivo. Biochem J 1987; 243: 803–808

    PubMed  CAS  Google Scholar 

  127. Hellsten Y, Tullson PC, Richter EA, et al. Oxidation of urate in human skeletal muscle during exercise. Free Radic Biol Med 1997; 22 (1–2): 169–174

    Article  PubMed  CAS  Google Scholar 

  128. Green HJ, Fraser IG. Differential effects of exercise intensity on serum uric acid concentration. Med Sci Sports Exerc 1988; 20 (2): 55–59

    PubMed  CAS  Google Scholar 

  129. Hellsten Y, Sjödin B, Richter EA, et al. Urate uptake and lowered ATP levels in human muscle after high-intensity intermittent exercise. Am J Physiol 1998; 274: E600–E606

    PubMed  CAS  Google Scholar 

  130. Kaur H, Halliwell B. Action of biologically-relevant oxidizing species upon uric acid: identification of uric acid oxidation products. Chem-Biol Interactions 1990; 73: 235–247

    Article  CAS  Google Scholar 

  131. Wayner DDM, Burton GW, Ingold KU, et al. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 1987; 924: 408–419

    Article  PubMed  CAS  Google Scholar 

  132. Hooper DC, Spitsin S, Kean RB, et al. Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalo-myelitis and multiple sclerosis. Proc Natl Acad Sci U S A 1998; 95: 675–680

    Article  PubMed  CAS  Google Scholar 

  133. Hooper DC, Scott GS, Zborek A, et al. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barrier permeability changes and tissue damage in a mouse model of multiple sclerosis. FASEB J 2000; 14: 691–698

    PubMed  CAS  Google Scholar 

  134. Kean RB, Spitsin SV, Mikheeva T, et al. The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into the central nervous system in experimental allergic encephalo-myelitis through maintenance of blood-central nervous system barrier integrity. J Immunol 2000; 165: 6511–6518

    PubMed  CAS  Google Scholar 

  135. Davies KJA, Sevanian A, Muakkassah-Kelly SF, et al. Uric acid-iron ion complexes: a new aspect of the antioxidant functions of uric acid. Biochem J 1986; 235: 747–754

    PubMed  CAS  Google Scholar 

  136. Sevanian A, Davies KJA, Hochstein P. Serum urate as an antioxidant for ascorbic acid. Am J Clin Nutr 1991; 54: 1129S–11234S

    PubMed  CAS  Google Scholar 

  137. Marklund N, Östman B, Nalmo L, et al. Hypoxanthine, uric acid and allantoin as indicators of in vivo free radical reactions: description of a HPLC method and human brain microdialysis data. Acta Neurochir (Wien) 2000; 142: 1135–1142

    Article  CAS  Google Scholar 

  138. Hellsten Y, Svensson M, Sjodin B, et al. Allantoin formation and urate and glutathione exchange in human muscle during submaximal exercise. Free Radic Biol Med 2001; 31 (11): 1313–1322

    Article  PubMed  CAS  Google Scholar 

  139. Nishizawa J, Nakai A, Matsuda K, et al. Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 1999; 99: 934–941

    Article  PubMed  CAS  Google Scholar 

  140. Hamilton KL, Staib JL, Phillips T, et al. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med 2003; 34 (7): 800–809

    Article  PubMed  CAS  Google Scholar 

  141. Smolka MB, Zoppi CC, Alves AA, et al. HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am J Physiol Regul Integr Comp Physiol 2000; 279: R1539–R1545

    PubMed  CAS  Google Scholar 

  142. Meneghini R. Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 1997; 23 (5): 783–792

    Article  PubMed  CAS  Google Scholar 

  143. Cairo G, Recalcati S, Pietrangelo A, et al. The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic Biol Med 2002; 32 (12): 1237–1243

    Article  PubMed  CAS  Google Scholar 

  144. Orino K, Lehman L, Tsuji Y, et al. Ferritin and the response to oxidative stress. Biochem J 2001; 357: 241–247

    Article  PubMed  CAS  Google Scholar 

  145. Arosio P, Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med 2002; 33 (4): 457–463

    Article  PubMed  CAS  Google Scholar 

  146. Applegate LA, Scaletta C, Panizzon R, et al. Evidence that ferritin is UV inducible in human skin: part of putative defense mechanism. J Invest Dermatol 1998; 111: 159–163

    Article  PubMed  CAS  Google Scholar 

  147. Erario MA, Gonzales S, Noriega GO, et al. Bilirubin and ferritin as protectors against hemin-induced oxidative stress in liver. Cell Mol Biol 2002; 48 (8): 877–884

    PubMed  CAS  Google Scholar 

  148. Nikolaidis MG, Michailidis Y, Mougios V. Variation of soluble transferring receptor and ferritin concentrations in human serum during recovery and exercise. Eur J Appl Physiol 2003; 89: 500–502

    Article  PubMed  CAS  Google Scholar 

  149. Atanasiu RL, Stea D, Mateescu MA, et al. Direct evidence of caeruloplasmin antioxidant properties. Moll Cell Biochem 1998; 189: 127–135

    Article  CAS  Google Scholar 

  150. Yesikaya A, Yegin A, Ozdem S, et al. The effect of bilirubin on lipid peroxidation and antioxidant enzymes in cumene hydroperoxide-treated erythrocytes. Int J Clin Lab Res 1998; 28 (4): 230–234

    Article  Google Scholar 

  151. Kaur H, Hugues MN, Green CJ, et al. Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett 2003; 543 (1–3): 113–119

    Article  PubMed  CAS  Google Scholar 

  152. Margaritis I, Palazzetti S, Rousseau AS, et al. Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. J Am Coll Nutr 2003; 22 (2): 147–156

    PubMed  CAS  Google Scholar 

  153. Palazzetti S, Richard MJ, Favier A, et al. Overload training increases exercise-induced oxidative stress and damage. Can J Appl Physiol 2003; 28 (4): 588–604

    Article  PubMed  CAS  Google Scholar 

  154. Palazzetti S, Rousseau AS, Richard MJ, et al. Antioxidant supplementation preserves antioxidant response in physical training and low antioxidant intake. Br J Nutr 2004; 91: 91–100

    Article  PubMed  CAS  Google Scholar 

  155. Finaud J, Scislowski V, Lac G, et al. Antioxidant status and oxidative stress in professional rugby players: evolution throughout a season. Int J Sports Med 2006; 27: 87–93

    Article  PubMed  CAS  Google Scholar 

  156. Schröder H, Navarro E, Tramullas A, et al. Nutrition antioxidant status and oxidative stress in professional basketball players: effects of a three compound antioxidative supplement. Int J Sports Med 2000; 21 (2): 146–150

    Article  PubMed  Google Scholar 

  157. Herbert V. Symposium: prooxidant effects of antioxidant vita- mins. J Nutr 1996; 126: 1197–1200

    Google Scholar 

  158. Choi EJ, Chee KM, Lee BH. Anti- and prooxidant effects of chronic quercitin administration in rats. Eur J Pharmacol 2003; 482: 281–285

    Article  PubMed  CAS  Google Scholar 

  159. James AM, Smith RAJ, Murphy MP. Antioxidant and prooxidant properties of mitochondrial coenzyme Q. Arch Biochem Biophys 2004; 423: 47–56

    Article  PubMed  CAS  Google Scholar 

  160. Duthié GG. Determination of activity of antioxidants in human subjects. Proc Nutr Soc 1999; 58 (4): 1015–1024

    Article  PubMed  Google Scholar 

  161. Jenkins RR. Exercise and oxidative stress methodology: a critique. Am J Clin Nutr 2000; 72 (2- Suppl.): 670–674

    Google Scholar 

  162. Ashton T, Rowlands CC, Jones E, et al. Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive exercise. Eur J Appl Physiol 1998; 77 (6): 498–502

    Article  CAS  Google Scholar 

  163. Frank J, Pompella A, Biesalski HK. Histochemical visualization of oxidant stress. Free Radic Biol Med 2000; 29 (11): 1096–1105

    Article  PubMed  CAS  Google Scholar 

  164. Chen SS, Chang LS, Wei YH. Oxidative damage to proteins and decrease of antioxidant capacity in patients with varicocele. Free Radic Biol Med 2001; 30 (11): 1328–1334

    Article  PubMed  CAS  Google Scholar 

  165. Hofer T, Möller L. Optimization of the workup procedure for the analysis of 8-oxo-7,8-dihydro-2’-deoxyguanosine with electrochemical detection. Chem Res Toxicol 2002; 15: 426–432

    Article  PubMed  CAS  Google Scholar 

  166. Ortenblad N, Madsen K, Djurhuus MS. Antioxidant status and lipid peroxidation after short-term maximal exercise in trained and untrained humans. Am J Physiol 1997; 272 (4): R1258–R1263

    PubMed  CAS  Google Scholar 

  167. Varlet-Marie E, Maso F, Lac G, et al. Hemorheological disturbances in the overtraining syndrome. Clin Hemorheol Microcirc 2004; 30: 211–218

    PubMed  Google Scholar 

  168. Marzatico F, Pansarasa O, Bertorelli L, et al. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J Sports Med Phys Fitness 1997; 37: 235–239

    PubMed  CAS  Google Scholar 

  169. Miyazaki H, Oh-ishi S, Ookawara T, et al. Strenuous endurance training in humans reduces oxidative stress following exhaustive exercise. Eur J Appl Physiol 2001; 84: 1–6

    Article  PubMed  CAS  Google Scholar 

  170. Cao G, Prior RL. Postprandrial increases in serum antioxidant capacity in older women. J Appl Physiol 2000; 89: 877–883

    PubMed  CAS  Google Scholar 

  171. Kohen R, Vellaichamy E, Hrbac J, et al. Quantification of the overall reactive oxygen species scavenging capacity of biological fluids and tissues. Free Radic Biol Med 2000; 28 (6): 871–879

    Article  PubMed  CAS  Google Scholar 

  172. Davies KJ, Quintanilha AT, Brooks GA, et al. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 1982; 107: 1198–1205

    Article  PubMed  CAS  Google Scholar 

  173. Child RB, Wilkinson DM, Fallowfield JL, et al. Elevated serum antioxidant capacity and plasma malondialdehyde concentration in response to a simulated half-marathon run. Med Sci Sports Exerc 1998; 30 (11): 1603–1607

    Article  PubMed  CAS  Google Scholar 

  174. Lovlin R, Cottle W, Pyke I, et al. Are indices of radical damage related to exercise intensity? Eur J Appl Physiol 1987; 56: 313–316

    Article  CAS  Google Scholar 

  175. Aguilo A, Tauler P, Fuentespina E, et al. Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav 2005; 84 (1): 1–7

    Article  PubMed  CAS  Google Scholar 

  176. Vider J, Lehtmaa J, Kullisaar T, et al. Acute immune response in respect to exercise-induced oxidative stress. Pathophysiology 2001; 7: 263–270

    Article  PubMed  CAS  Google Scholar 

  177. Margaritis I, Tessier F, Richard MJ, et al. No evidence of oxidative stress after a triathlon race in highly trained competitors. Int J Sports Med 1997; 18 (3): 186–190

    Article  PubMed  CAS  Google Scholar 

  178. Inal M, Akyüz F, Turgut A, et al. Effect of aerobic and anaerobic metabolism on free radical generation swimmers. Med Sci Sports Exerc 2001; 33 (4): 564–567

    PubMed  CAS  Google Scholar 

  179. Chevion S, Moran DS, Heled Y, et al. Plasma antioxidant status and cell injury after severe physical exercise. Proc Natl Acad Sci U S A 2003; 100 (9): 5119–5123

    Article  PubMed  CAS  Google Scholar 

  180. Ji LL, Fu R. Antioxidant enzyme response to exercise and aging. Med Sci Sport Exerc 1993; 25 (2): 225–231

    Article  CAS  Google Scholar 

  181. Criswell D, Powers S, Dodd S, et al. High intensity training-induced changes in skeletal muscle anti-oxidant enzyme activity. Med Sci Sports Exerc 1993; 25 (10): 1135–1140

    PubMed  CAS  Google Scholar 

  182. Radak Z, Nakamura A, Nakamoto H, et al. A period of anaerobic exercise increases the accumulation of reactive carbonyl derivatives in the lungs of rats. Plügers Arch 1998; 435: 439–441

    Article  CAS  Google Scholar 

  183. Kayatekin BM, Gönenc S, Açikgöz O, et al. Effects of sprint exercise on oxidative stress in skeletal muscle and liver. Eur J Appl Physiol 2002; 87: 141–144

    Article  PubMed  CAS  Google Scholar 

  184. Goldfarb AH, Bloomer RJ, McKenzie MJ. Combined antioxidant treatment effects on blood oxidative stress after eccentric exercise. Med Sci Sports Exerc 2005; 37 (2): 234–239

    Article  PubMed  CAS  Google Scholar 

  185. Ramel A, Wagner KH, Elmadfa I. Plasma antioxidants and lipid oxidation after submaximal resistance exercise in men. Eur J Nutr 2004; 43: 2–6

    Article  PubMed  CAS  Google Scholar 

  186. Sahlin K, Cizinsky S, Warholm M, et al. Repetitive static muscle contractions in humans: a trigger of metabolic and oxidative stress? Eur J Appl Physiol 1992; 64: 228–236

    Article  CAS  Google Scholar 

  187. Saxton JM, Donnelly AE, Roper HP. Indices of free-radical-mediated damage following maximum voluntary eccentric and concentric muscular work. Eur J Appl Physiol 1994; 68: 189–193

    Article  CAS  Google Scholar 

  188. Groussard C, Machefer G, Rannou F, et al. Physical fitness and plasma non-enzymatic antioxidant status at rest and after a Wingate test. Can J Appl Physiol 2003; 28 (1): 79–92

    Article  PubMed  CAS  Google Scholar 

  189. Chang CK, Tseng HF, Hsuuw YD, et al. Higher LDL oxidation at rest and after a rugby game in weekend warriors. Ann Nutr Metab 2002; 46: 103–107

    Article  PubMed  CAS  Google Scholar 

  190. Elosua R, Molina L, Fito M, et al. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis 2003; 167: 327–334

    Article  PubMed  CAS  Google Scholar 

  191. Ohno H, Yahata T, Sato Y, et al. Physical training and fasting erythrocyte activities of free radical scavenging enzyme systems in sedentary men. Eur J Appl Physiol 1988; 57 (2): 173–176

    Article  CAS  Google Scholar 

  192. Accominotti M, Dutey P, Lahet C, et al. Evolution des taux de selenium et de glutathion peroxydase sanguins de sportifs de haut niveau. Sci Sports 1991; 6: 165–172

    Article  Google Scholar 

  193. Bergholm R, Makimattila S, Valkonen M, et al. Intense physical training decreases circulating antioxidants and endothelium-dependant vasodilatation in-vivo. Atherosclerosis 1999; 145 (2): 341–349

    Article  PubMed  CAS  Google Scholar 

  194. Venditti P, Di Meo S. Effect of training on antioxidant capacity, tissue damage, and endurance of adult male rats. Int J Sports Med 1997; 18: 497–502

    Article  PubMed  CAS  Google Scholar 

  195. Hollander J, Fiebig R, Gore M, et al. Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptation to endurance training. Am J Physiol 1999; 277 (46): R856–R862

    PubMed  CAS  Google Scholar 

  196. Selamoglu S, Turgay F, Kayatekin BM, et al. Aerobic and anaerobic training effects on the antioxidant enzymes in the blood. Acta Physiol Hung 2000; 87 (3): 267–273

    Article  PubMed  CAS  Google Scholar 

  197. Powers SK, Ji LL, Leewenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 1999; 31 (7): 987–997

    Article  PubMed  CAS  Google Scholar 

  198. Child RB, Wilkinson DM, Fallowfield JL. Resting serum anti-oxidant status is positively correlated with peak oxygen uptake in endurance trained runners. J Sports Med Phys Fitness 1999; 39 (4): 282–284

    PubMed  CAS  Google Scholar 

  199. Rall LC, Roubenoff R, Meydani SN, et al. Urinary 8-hy-droxy-2’-deoxyguanosine (8-OHdG) as a marker of oxidative stress in rheumatoid arthritis and aging: effect of progressive resistance training. J Nutr Biochem 2000; 11: 581–584

    Article  PubMed  CAS  Google Scholar 

  200. Vincent KR, Vincent HK, Braith RW, et al. Resistance exercise training attenuates exercise-induced lipid peroxidation in the elderly. Eur J Appl Physiol 2002; 87: 416–423

    Article  PubMed  CAS  Google Scholar 

  201. Hellsten Y, Apple FS, Sjodin B. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. J Appl Physiol 1996; 81 (4): 1484–1487

    PubMed  CAS  Google Scholar 

  202. Cazzola R, Russo-Volpe S, Cervato G, et al. Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. Eur J Clin Invest 2003; 33 (10): 924–930

    Article  PubMed  CAS  Google Scholar 

  203. Metin G, Gumustas MK, Uslu E, et al. Effect of regular training on plasma thiols, malondialdehyde and carnitine concentrations in young soccer players. Chin J Physiol 2003; 46 (1): 35–39

    PubMed  CAS  Google Scholar 

  204. Balakrishnan SD, Anuradha CV. Exercise, depletion of antioxidants and antioxidant manipulation. Cell Biochem Funct 1998; 16 (4): 269–275

    Article  PubMed  CAS  Google Scholar 

  205. Brites FD, Evelson PA, Christiansen MG, et al. Soccer players under regular training show oxidative stress but an improved plasma antioxidant status. Clin Sci 1999; 96 (4): 381–385

    Article  PubMed  CAS  Google Scholar 

  206. Subudhi AW, Davis SL, Kipp RW, et al. Antioxidant status and oxidative stress in elite alpine ski racers. Int J Sport Nutr Exerc Metab 2001; 11 (1): 32–41

    PubMed  CAS  Google Scholar 

  207. Evelson P, Gambino G, Travacio M, et al. Higher antioxidant defences in plasma and low density lipoproteins from rugby players. Eur J Clin Invest 2002; 32 (11): 818–825

    Article  PubMed  CAS  Google Scholar 

  208. Schippinger G, Wonisch W, Abuja PM, et al. Lipid peroxidation and antioxidant status in professional American football players during competition. Eur J Clin Invest 2002; 32 (9): 686–692

    Article  PubMed  CAS  Google Scholar 

  209. Fry RW, Morton AR, Keast D. Overtraining in athletes: an update. Sports Med 1991; 12 (1): 32–65

    Article  PubMed  CAS  Google Scholar 

  210. Rowbottom DG, Keast D, Goodman C, et al. The haematological, biochemical and immunological profile of athletes suffering from the overtraining syndrome. Eur J Appl Physiol 1995; 70: 502–509

    Article  CAS  Google Scholar 

  211. Urhausen A, Kindermann W. Diagnosis of overtraining: what tools do we have? Sports Med 2002; 32 (2): 95–102

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review. This work is dedicated to the late Prof. Robert (2004) and the late Prof. Bedo (2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Finaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finaud, J., Lac, G. & Filaire, E. Oxidative Stress. Sports Med 36, 327–358 (2006). https://doi.org/10.2165/00007256-200636040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200636040-00004

Keywords

Navigation