Skip to main content
Log in

Effect of Exercise Intensity, Duration and Mode on Post-Exercise Oxygen Consumption

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

In the recovery period after exercise there is an increase in oxygen uptake termed the ‘excess post-exercise oxygen consumption’ (EPOC), consisting of a rapid and a prolonged component. While some studies have shown that EPOC may last for several hours after exercise, others have concluded that EPOC is transient and minimal. The conflicting results may be resolved if differences in exercise intensity and duration are considered, since this may affect the metabolic processes underlying EPOC. Accordingly, the absence of a sustained EPOC after exercise seems to be a consistent finding in studies with low exercise intensity and/or duration. The magnitude of EPOC after aerobic exercise clearly depends on both the duration and intensity of exercise. A curvilinear relationship between the magnitude of EPOC and the intensity of the exercise bout has been found, whereas the relationship between exercise duration and EPOC magnitude appears to be more linear, especially at higher intensities.

Differences in exercise mode may potentially contribute to the discrepant findings of EPOC magnitude and duration. Studies with sufficient exercise challenges are needed to determine whether various aerobic exercise modes affect EPOC differently. The relationships between the intensity and duration of resistance exercise and the magnitude and duration of EPOC have not been determined, but a more prolonged and substantial EPOC has been found after hardversus moderate-resistance exercise. Thus, the intensity of resistance exercise seems to be of importance for EPOC.

Lastly, training status and sex may also potentially influence EPOC magnitude, but this may be problematic to determine. Still, it appears that trained individuals have a more rapid return of post-exercise metabolism to resting levels after exercising at either the same relative or absolute work rate; however, studies after more strenuous exercise bouts are needed. It is not determined if there is a sex effect on EPOC.

Finally, while some of the mechanisms underlying the more rapid EPOC are well known (replenishment of oxygen stores, adenosine triphosphate/creatine phosphate resynthesis, lactate removal, and increased body temperature, circulation and ventilation), less is known about the mechanisms underlying the prolonged EPOC component. A sustained increased circulation, ventilation and body temperature may contribute, but the cost of this is low. An increased rate of triglyceride/fatty acid cycling and a shift from carbohydrate to fat as substrate source are of importance for the prolonged EPOC component after exhaustive aerobic exercise. Little is known about the mechanisms underlying EPOC after resistance exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3
Table II

Similar content being viewed by others

References

  1. Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 1923; 16: 135–71

    Article  CAS  Google Scholar 

  2. Hill AV, Long CNH, Lupton H. Muscular exercise, lactic acid, and the supply and utilisation of oxygen: parts I–III. Proc R Soc Lond (Biol) 1924; 96: 438–75

    Article  CAS  Google Scholar 

  3. Hill AV, Long CNH, Lupton H. Muscular exercise, lactic acid, and the supply and utilisation of oxygen: parts IV–VI. Proc R Soc Lond (Biol) 1924; 97: 84–138

    Article  CAS  Google Scholar 

  4. Hill AV, Long CNH, Lupton H. Muscular exercise, lactic acid, and the supply and utilitsation of oxygen: parts VII–VIII. Proc R Soc Lond (Biol) 1924; 97: 155–76

    Article  CAS  Google Scholar 

  5. Margaria R, Edwards HT, Dill OB. The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol 1933; 106: 689–715

    CAS  Google Scholar 

  6. Gaesser GA, Brooks GA. Metabolic bases of excess post-exercise oxygen consumption: a review. Med Sci Sports Exerc 1984; 16(1): 29–43

    PubMed  CAS  Google Scholar 

  7. Bahr R. Excess postexercise oxygen consumption: magnitude, mechanisms and practical implications. Acta Physiol Scand 1992; 144Suppl. 605: 1–70

    Google Scholar 

  8. Bullough RC, Gillette CA, Harris MA, et al. Interaction of acute changes in exercise energy expenditure and energy intake on resting metabolic rate. Am J Clin Nutr 1995 Mar; 61(3): 473–81

    PubMed  CAS  Google Scholar 

  9. Benedict FG, Carpenter TM. The metabolism and energy transformations of healthy man during rest. Washington, DC: The Carnegie Institute, 1910

    Google Scholar 

  10. Herxheimer H, Wissing E, Wolff E. Spätwirkungen erschöpfender Muskelarbeit auf den Sauerstoffverbrauch. Z Gesamte Exp Med 1926; 51: 916–28

    Article  CAS  Google Scholar 

  11. Edwards HT, Thorndike A, Dill DB. The energy requirements in strenuous muscular exercise. N Engl J Med 1935; 213: 532–5

    Article  Google Scholar 

  12. Passmore R, Johnson RE. Some metabolic changes following prolonged moderate exercise. Metabolism 1960; 9: 452–5

    PubMed  CAS  Google Scholar 

  13. deVries HA, Gray DE. After effects of exercise upon resting metabolic rate. Res Q 1963; 34(3): 314–21

    Google Scholar 

  14. Bielinski R, Schutz Y, Jequier E. Energy metabolism during the postexercise recovery in man. Am J Clin Nutr 1985 Jul; 42(1): 69–82

    PubMed  CAS  Google Scholar 

  15. Mæhlum S, Grandmontagne M, Newsholme EA, et al. Magnitude and duration of excess postexercise oxygen consumption in healthy young subjects. Metabolism 1986; 35(5): 425–9

    Article  PubMed  Google Scholar 

  16. Bahr R, Ingnes I, Vaage O, et al. Effect of duration of exercise on excess postexercise O2 consumption. J Appl Physiol 1987 Feb; 62(2): 485–90

    Article  PubMed  CAS  Google Scholar 

  17. Chad KE, Wenger HA. The effect of exercise duration on the exercise and post-exercise oxygen consumption. Can J Sport Sci 1988; 13: 204–7

    PubMed  CAS  Google Scholar 

  18. Gore CJ, Withers RT. Effect of exercise intensity and duration on postexercise metabolism. J Appl Physiol 1990; 68(6): 2362–8

    PubMed  CAS  Google Scholar 

  19. Gore CJ, Withers RT. The effect of exercise intensity and duration on the oxygen deficit and excess post-exercise oxygen consumption. Eur J Appl Physiol 1990; 60: 169–74

    Article  CAS  Google Scholar 

  20. Hagberg JM, Mullin JP, Nagle FJ. Effect of work intensity and duration on recovery O2. J Appl Physiol 1980; 48: 540–4

    PubMed  CAS  Google Scholar 

  21. Freedman-Akabas S, Colt E, Kissileff HR, et al. Lack of sustained increase in V̇O2 following exercise in fit and unfit subjects. Am J Clin Nutr 1985; 41: 545–9

    PubMed  CAS  Google Scholar 

  22. Pacy PJ, Barton N, Webster JD, et al. The energy cost of aerobic exercise in fed and fasted normal subjects. Am J Clin Nutr 1985 Nov; 42(5): 764–8

    PubMed  CAS  Google Scholar 

  23. Brehm BA, Gutin B. Recovery energy expenditure for steady state exercise in runners and nonexercisers. Med Sci Sports Exerc 1986; 18: 205–10

    PubMed  CAS  Google Scholar 

  24. Elliot DL, Goldberg L, Kuehl KS. Does aerobic conditioning cause a sustained increase in the metabolic rate? Am J Med Sci 1988; 296: 249–51

    PubMed  CAS  Google Scholar 

  25. Turley KR, McBride PJ, Wilmore JH. Resting metabolic rate measured after subjects spent the night at home vs at a clinic. Am J Clin Nutr 1993 Aug; 58(2): 141–4

    PubMed  CAS  Google Scholar 

  26. Bullough RC, Melby CL. Effect of inpatient versus outpatient measurement protocol on resting metabolic rate and respiratory exchange ratio. Ann Nutr Metab 1993; 37(1): 24–32

    Article  PubMed  CAS  Google Scholar 

  27. Maresh CM, Abraham A, De Souza MJ, et al. Oxygen consumption following exercise of moderate intensity and duration. Eur J Appl Physiol 1992; 65: 421–6

    Article  CAS  Google Scholar 

  28. Knuttgen HG. Oxygen debt after submaximal physical exercise. J Appl Physiol 1970; Nov 29(5): 651–7

    PubMed  CAS  Google Scholar 

  29. Segal SS, Brooks GA. Effects of glycogen depletion and work load on postexercise O2 consumption and blood lactate. J Appl Physiol 1979; 47: 514–21

    PubMed  CAS  Google Scholar 

  30. Hermansen L, Grandmontagne M, Mæhlum S, et al. Postexercise elevation of resting oxygen uptake: possible mechanisms and physiological significance. In: Marconnet P, Poortmans J, Hermansen L, editors. Medicine and sport science. Vol. 17. Basel: Karger, 1984: 119–29

    Google Scholar 

  31. Chad KE, Wenger HA. The effects of duration and intensity on the exercise and post-exercise metabolic rate. Aust J Sci Med Sport 1985; 17: 14–8

    Google Scholar 

  32. Devlin JT, Horton ES. Potentiation of the thermic effect of insulin by exercise: differences between lean, obese, and noninsulin-dependent diabetic men. Am J Clin Nutr 1986; 43: 884–90

    PubMed  CAS  Google Scholar 

  33. Sedlock D, Fissinger JA, Melby CL. Effect of exercise intensity and duration on postexercise energy expenditure. Med Sci Sports Exerc 1989; 21: 662–6

    PubMed  CAS  Google Scholar 

  34. Chad K, Quigley B. The effects of substrate utilization, manipulated by caffeine, on post-exercise oxygen consumption in untrained female subjects. Eur J Appl Physiol 1989; 59: 48–54

    Article  CAS  Google Scholar 

  35. Poehlman ET, LaChance P, Tremblay A, et al. The effect of prior exercise and caffeine ingestion on metabolic rate and hormones in young adult males. Can J Physiol Pharmacol 1989 Jan; 67(1): 10–6

    Article  PubMed  CAS  Google Scholar 

  36. Kaminsky LA, Padjen S, LaHam-Saeger J. Effect of split exercise sessions on excess post-exercise oxygen consumption. Br J Sports Med 1990; 24(2): 95–8

    Article  PubMed  CAS  Google Scholar 

  37. Bahr R, Hansson P, Sejersted OM. Triglyceride/fatty acid cycling is increased after exercise. Metabolism 1990; 39(9): 993–9

    Article  PubMed  CAS  Google Scholar 

  38. Chad KE, Quigley BM. Exercise intensity: effect on post-exercise O2 uptake in trained and untrained women. J Appl Physiol 1991; 70: 1713–9

    PubMed  CAS  Google Scholar 

  39. Sedlock DA. Postexercise energy expenditure following upper body exercise. Res Q Exerc Sport 1991 Jun; 62(2): 213–6

    PubMed  CAS  Google Scholar 

  40. Sedlock DA. Effect of exercise intensity on postexercise energy expenditure in women. Br J Sports Med 1991 Mar; 25(1): 38–40

    Article  PubMed  CAS  Google Scholar 

  41. Berg KE. Comparison of energy expenditure in men and women at rest and during exercise recovery. J Sports Med Phys Fitness 1991; 31(3): 351–6

    PubMed  CAS  Google Scholar 

  42. Withers RT, Gore CJ, Mackay MH, et al. Some aspect of metabolism following a 35 km road run. Eur J Appl Physiol 1991; 63: 436–43

    Article  CAS  Google Scholar 

  43. Bahr R, Sejersted OM. Effect of intensity of exercise on excess postexercise O2 consumption. Metabolism 1991 Aug; 40(8): 836–41

    Article  PubMed  CAS  Google Scholar 

  44. Bahr R, Sejersted OM. Effect of feeding and fasting on excess postexercise oxygen consumption. J Appl Physiol 1991 Dec; 71(6): 2088–93

    PubMed  CAS  Google Scholar 

  45. Bahr R, Grønnerød O, Sejersted OM. Effect of supramaximal exercise on excess postexercise O2 consumption. Med Sci Sports Exerc 1992 Jan; 24(1): 66–71

    PubMed  CAS  Google Scholar 

  46. Elliot DL, Goldberg L, Kuehl KS. Effect of resistance training on excess post-exercise oxygen consumption. J Appl Sport Sci Res 1992; 6(2): 77–81

    Google Scholar 

  47. Sedlock DA. Post-exercise energy expenditure after cycle ergometer and treadmill exercise. J Appl Sport Sci Res 1992; 6(1): 19–23

    Google Scholar 

  48. Donelly K, McNaughton L. The effects of two levels of caffeine ingestion on excess postexercise oxygen consumption in untrained women. Eur J Appl Physiol Occup Physiol 1992; 65(5): 459–63

    Article  PubMed  CAS  Google Scholar 

  49. Brockman L, Berg K, Latin R. Oxygen uptake during recovery from intense intermittent running and prolonged walking. J Sports Med Phys Fitness 1993 Dec; 33(4): 330–6

    PubMed  CAS  Google Scholar 

  50. Kaminsky LA, Whaley MH. Effect of interval-type exercise on excess postexercise oxygen consumption (EPOC) in obese and normal-weight women. Med Exerc Nutr Health 1993; 2: 106–11

    Google Scholar 

  51. Smith J, McNaughton L. The effects of intensity of exercise on excess postexercise oxygen consumption and energy expenditure in moderately trained men and women. Eur J Appl Physiol 1993; 67: 420–5

    Article  CAS  Google Scholar 

  52. Neary JP, Docherty D, Wenger HA. Post-exercise metabolic rate is influenced by elevated core temperature. Aust J Sci Med Sport 1993; 25(2): 43–7

    Google Scholar 

  53. Frey GC, Byrnes WC, Mazzeo RS. Factors influencing excess postexercise oxygen consumption in trained and untrained women. Metabolism 1993; 42(7): 822–8

    Article  PubMed  CAS  Google Scholar 

  54. Børsheim E, Bahr R, Hansson P, et al. Effect of β-adrenoceptor blockade on post-exercise oxygen consumption. Metabolism 1994; 43(5): 565–71

    Article  PubMed  Google Scholar 

  55. Thomas TR, Londeree BR, Lawson DA. Prolonged recovery from eccentric versus concentric exercise. Can J Appl Physiol 1994; 19(4): 441–50

    Article  PubMed  CAS  Google Scholar 

  56. Sedlock DA. Fitness level and postexercise energy expenditure. J Sports Med Phys Fitness 1994 Dec; 34(4): 336–42

    PubMed  CAS  Google Scholar 

  57. Gilette CA, Bullough RC, Melby C. Postexercise energy expenditure in response to acute aerobic or resistive exercise. Int J Sport Nutr 1994; 4: 347–60

    Google Scholar 

  58. Quinn TJ, Vroman NB, Kertzer R. Postexercise oxygen consumption in trained females: effect of exercise duration. Med Sci Sports Exerc 1994 Jul; 26(7): 908–13

    PubMed  CAS  Google Scholar 

  59. Harms CA, Cordain L, Stager JM, et al. Body fat mass affects postexercise metabolism in males of similar lean body mass. Med Exerc Nutr Health 1995; 4: 33–9

    Google Scholar 

  60. Dawson B, Straton S, Randall N. Oxygen consumption during recovery from prolonged submaximal cycling below the anaerobic threshold. J Sports Med Phys Fitness 1996 Jun; 36(2): 77–84

    PubMed  CAS  Google Scholar 

  61. Short KR, Wiest JM, Sedlock DA. The effect of upper body exercise intensity and duration on post-exercise oxygen consumption. Int J Sports Med 1996 Nov; 17(8): 559–63

    Article  PubMed  CAS  Google Scholar 

  62. Trost S, Wilcox A, Gillis D. The effect of substrate utilization, manipulated by nicotinic acid, on excess postexercise oxygen consumption. Int J Sports Med 1997; 18(2): 83–8

    Article  PubMed  CAS  Google Scholar 

  63. Phelain JF, Reinke E, Harris MA, et al. Postexercise energy expenditure and substrate oxidation in young women resulting from exercise bouts of different intensity. J Am Coll Nutr 1997 Apr; 16(2): 140–6

    PubMed  CAS  Google Scholar 

  64. Laforgia J, Withers RT, Shipp NJ, et al. Comparison of energy expenditure elevations after submaximal and supramaximal running. J Appl Physiol 1997; 82(2): 661–6

    PubMed  CAS  Google Scholar 

  65. Short KR, Sedlock DA. Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. J Appl Physiol 1997; 83(1): 153–9

    PubMed  CAS  Google Scholar 

  66. Burleson Jr MA, O’Bryant HS, Stone MH, et al. Effect of weight training exercise and treadmill exercise on post-exercise oxygen consumption. Med Sci Sports Exerc 1998 Apr; 30(4): 518–22

    Article  PubMed  Google Scholar 

  67. Almuzaini KS, Potteiger JA, Green SB. Effects of split exercise sessions on excess postexercise oxygen consumption and resting metabolic rate. Can J Appl Physiol 1998 Oct; 23(5): 433–43

    Article  PubMed  CAS  Google Scholar 

  68. Børsheim E, Bahr R, Høstmark AT, et al. Effect of β-adre-noceptor blockade on post-exercise oxygen consumption and triglyceride/fatty acid cycling. Metabolism 1998; 47(4): 439–48

    Article  PubMed  Google Scholar 

  69. Børsheim E, Bahr R, Knardahl S. Effect of β-adrenoceptor stimulation on oxygen consumption and triglyceride/fatty acid cycling after exercise. Acta Physiol Scand 1998; 164: 157–66

    Article  PubMed  Google Scholar 

  70. Matsuo T, Saitoh S, Suzuki M. Effects of the menstrual cycle on excess postexercise oxygen consumption in healthy young women. Metabolism 1999 Mar; 48(3): 275–7

    Article  PubMed  CAS  Google Scholar 

  71. Lee YS, Ha MS, Lee YJ. The effects of various intensities and durations of exercise with and without glucose in milk ingestion on postexercise oxygen consumption. J Sports Med Phys Fitness 1999 Dec; 39(4): 341–7

    PubMed  CAS  Google Scholar 

  72. Fukuba Y, Yano Y, Murakami H, et al. The effect of dietary restriction and menstrual cycle on excess post-exercise oxygen consumption (EPOC) in young women. Clin Physiol 2000 Mar; 20(2): 165–9

    Article  PubMed  CAS  Google Scholar 

  73. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc 2001 Jun; 33 (6 Suppl.): S446–51

    PubMed  CAS  Google Scholar 

  74. Bahr R, Opstad PK, Medbø JI, et al. Strenuous prolonged exercise elevates resting metabolic rate and causes reduced mechanical efficiency. Acta Physiol Scand 1991 Apr; 141(4): 555–63

    Article  PubMed  CAS  Google Scholar 

  75. Newham DJ, McPhail G, Mills KR, et al. Ultrastructural changes after concentric and eccentric contractions of human muscle. J Neurol Sci 1983 Sep; 61(1): 109–22

    Article  PubMed  CAS  Google Scholar 

  76. Friden J, Lieber RL. Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand 2001 Mar; 171(3): 321–6

    Article  PubMed  CAS  Google Scholar 

  77. Fridén J, Sjöström M, Ekblom B. Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 1983; 4: 170–6

    Article  PubMed  Google Scholar 

  78. Kolkhorst FW, Londeree BR, Thomas TR. Effect of consecutive exercise days of jogging or cycling on the resting metabolic rate and nitrogen balance. J Sports Med Phys Fitness 1994; 34: 343–50

    PubMed  CAS  Google Scholar 

  79. Melby CL, Tincknell T, Schmidt WD. Energy expenditure following a bout of non-steady state resistance exercise. J Sports Med Phys Fitness 1992; 32: 128–35

    PubMed  CAS  Google Scholar 

  80. Murphy E, Schwarzkopf R. Effects of standard set and circuit weight training on excess post-exercise oxygen consumption. J Appl Sport Sci Res 1992; 6(2): 88–91

    Google Scholar 

  81. Melby C, Scholl C, Edwards G, et al. Effect of acute resistance exercise on postexercise energy expenditure and resting metabolic rate. J Appl Physiol 1993 Oct; 75(4): 1847–53

    PubMed  CAS  Google Scholar 

  82. Olds TS, Abernethy PJ. Postexercise oxygen consumption following heavy and light resistance exercise. J Strength Cond Res 1993; 7: 147–52

    Google Scholar 

  83. Haltom RW, Kraemer RR, Sloan RA, et al. Circuit weight training and its effects on excess postexercise oxygen consumption. Med Sci Sports Exerc 1999 Nov; 31(11): 1613–8

    Article  PubMed  CAS  Google Scholar 

  84. Dolezal BA, Potteiger JA, Jacobsen DJ, et al. Muscle damage and resting metabolic rate after acute resistance exercise with an eccentric overload. Med Sci Sports Exerc 2000 Jul; 32(7): 1202–7

    Article  PubMed  CAS  Google Scholar 

  85. Osterberg KL, Melby CL. Effect of acute resistance exercise on postexercise oxygen consumption and resting metabolic rate in young women. Int J Sport Nutr Exerc Metab 2000 Mar; 10(1): 71–81

    PubMed  CAS  Google Scholar 

  86. Binzen CA, Swan PD, Manore MM. Postexercise oxygen consumption and substrate use after resistance exercise in women. Med Sci Sports Exerc 2001 Jun; 33(6): 932–8

    Article  PubMed  CAS  Google Scholar 

  87. Thornton MK, Potteiger JA. Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sports Exerc 2002 Apr; 34(4): 715–22

    Article  PubMed  Google Scholar 

  88. Schuenke MD, Mikat RP, McBride JM. Effect of an acute period of resistance exercise on excess post-exercise oxygen consumption: implications for body mass management. Eur J Appl Physiol 2002 Mar; 86(5): 411–7

    Article  PubMed  CAS  Google Scholar 

  89. Williamson DL, Kirwan JP. A single bout of concentric resistance exercise increases basal metabolic rate 48 hours after exercise in healthy 59–77-year-old men. J Gerontol A Biol Sci Med Sci 1997 Nov; 52(6): M352–5

    Article  PubMed  CAS  Google Scholar 

  90. Hagberg JM, Hickson RC, Ehsani AA, et al. Faster adjustment to and recovery from submaximal exercise in the trained state. J Appl Physiol 1980 Feb; 48(2): 218–24

    PubMed  CAS  Google Scholar 

  91. Girandola RN, Katch FI. Effects of physical conditioning on changes in exercise and recovery O2 uptake and efficiency during constant-load ergometer exercise. Med Sci Sports 1973; 5(4): 242–7

    PubMed  CAS  Google Scholar 

  92. Solomon SJ, Kurzer MS, Calloway DH. Menstrual cycle and basal metabolic rate in women. Am J Clin Nutr 1982 Oct; 36(4): 611–6

    PubMed  CAS  Google Scholar 

  93. Meijer GA, Westerterp KR, Saris WH, et al. Sleeping metabolic rate in relation to body composition and the menstrual cycle. Am J Clin Nutr 1992 Mar; 55(3): 637–40

    PubMed  CAS  Google Scholar 

  94. Bisdee JT, James WP, Shaw MA. Changes in energy expenditure during the menstrual cycle. Br J Nutr 1989 Mar; 61(2): 187–99

    Article  PubMed  CAS  Google Scholar 

  95. Hessemer V, Brack K. Influence of menstrual cycle on thermo-regulatory, metabolic, and heart rate responses to exercise at night. J Appl Physiol 1985 Dec; 59(6): 1911–7

    PubMed  CAS  Google Scholar 

  96. Webb P. 24-hour energy expenditure and the menstrual cycle. Am J Clin Nutr 1986 Nov; 44(5): 614–9

    PubMed  CAS  Google Scholar 

  97. Bangsbo J, Gollnick PD, Graham TE, et al. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. J Physiol 1990; 422: 539–59

    PubMed  CAS  Google Scholar 

  98. Wolfe RR, Klein S, Carraro F, et al. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Physiol 1990; 258(21): E382–9

    PubMed  CAS  Google Scholar 

  99. Miyoshi H, Schulman GI, Peters EJ, et al. Hormonal control of substrate cycling in humans. J Clin Invest 1988; 81: 1545–55

    Article  PubMed  CAS  Google Scholar 

  100. Wolfe RR, Peters EJ. Lipolytic response to glucose infusion in human subjects. Am J Physiol 1987; 252(15): E218–23

    PubMed  CAS  Google Scholar 

  101. Chaliss RAJ, Arch JRS, Newsholme EA. The rate of substrate cycling between fructose 6-phosphate and fructose 1,6-bisphosphate in skeletal muscle. Biochem J 1984; 221: 153–61

    Google Scholar 

  102. Wolfe RR, Herndon DN, Jahoor F, et al. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 1987; 317: 403–8

    Article  PubMed  CAS  Google Scholar 

  103. Stein TP, Rumpler WV, Leskiw MJ, et al. Effect of reduced dietary intake on energy expenditure, protein turnover, and glucose cycling in man. Metabolism 1991; 40(5): 478–83

    Article  PubMed  CAS  Google Scholar 

  104. Weber JM, Klein SE, Wolfe RR. Role of the glucose cycle in control of net glucose flux in exercising humans. J Appl Physiol 1990; 68: 1815–9

    Article  PubMed  CAS  Google Scholar 

  105. Wolfe RR, Klein S, Herndon DN, et al. Substrate cycling in thermogenesis and amplification of net substrate flux in human volunteers and burned patients. J Trauma 1990; 30(12): 6–9

    Article  Google Scholar 

  106. Flatt JP. The biochemistry of energy expenditure. In: Bray GA, editor. Recent advances in obesity research II. London: Newman, 1978: 211–28

    Google Scholar 

  107. Hellerstein MK, Schwarz JM, Neese RA. Regulation of hepatic de novo lipogenesis in humans. Annu Rev Nutr 1996; 16: 523–57

    Article  PubMed  CAS  Google Scholar 

  108. McDevitt RM, Bott SJ, Harding M, et al. De novo lipogenesis during controlled overfeeding with sucrose or glucose in lean and obese women. Am J Clin Nutr 2001 Dec; 74(6): 737–46

    PubMed  CAS  Google Scholar 

  109. Richard D, Rivest S. The role of exercise in thermogenesis and energy balance. Can J Physiol Pharmacol 1989; 67(4): 402–9

    Article  PubMed  CAS  Google Scholar 

  110. Poehlman ET, Horton ES. The impact of food intake and exercise on energy expenditure. Nutr Rev 1989; 47: 129–37

    Article  PubMed  CAS  Google Scholar 

  111. Galbo H. Hormonal and metabolic adaptation to exercise. Stuttgart: Georg Thieme Verlag, 1983

    Google Scholar 

  112. Rønsen O, Haug E, Pedersen BK, et al. Increased neuroendocrine response to a repeated bout of endurance exercise. Med Sci Sports Exerc 2001 Apr; 33(4): 568–75

    PubMed  Google Scholar 

  113. Børsheim E, Lönnroth P, Knardahl S, et al. No difference in the lipolytic response to β-adrenoceptor stimulation in situ but a delayed increase in adipose tissue blood flow in moderately obese compared with lean men in the postexercise period. Metabolism 2000 May; 49(5): 579–87

    Article  PubMed  Google Scholar 

  114. Barnard RJ, Foss ML. Oxygen debt: effect of beta-adrenergic blockade on the lactacid and alactacid components. J Appl Physiol 1969; 27: 813–6

    PubMed  CAS  Google Scholar 

  115. Chapler CK, Stainsby WN, Gladden LB. Effect of changes in blood flow, norepinephrine and pH on oxygen uptake by resting skeletal muscle. Can J Physiol Pharmacol 1980; 58: 93–6

    Article  PubMed  CAS  Google Scholar 

  116. Gladden LB, Stainsby WN, Macintosh BR. Norepinephrine increases canine skeletal muscle V̇O2 during recovery. Med Sci Sports Exerc 1982; 14(6): 471–6

    Article  PubMed  CAS  Google Scholar 

  117. Sagnol M, Claustre J, Pequignot JM, et al. Catecholamines and fuels after an ultralong run: persistent changes after 24-h recovery. Int J Sports Med 1989 Jun; 10(3): 202–6

    Article  PubMed  CAS  Google Scholar 

  118. Cori CF, Buchwald KW. Effect of continuous injection of epinephrine on the carbohydrate metabolism, basal metabolism and vascular system of normal man. Am J Physiol 1930; 95: 71–8

    CAS  Google Scholar 

  119. Webber J, Macdonald IA. Metabolic actions of catecholamines in man. Bailliéres Clin Endocrinol Metab 1993; 7(2): 393–413

    Article  PubMed  CAS  Google Scholar 

  120. Blaak EE, Saris WHM, van Baak MA. Adrenoceptor subtypes mediating catecholamine-induced thermogenesis in man. Int J Obes 1993; 17(3): S78–81

    CAS  Google Scholar 

  121. Blaak EE, van Baak MA, Kempen KPG, et al. Role of α- and β-adrenoceptors in sympathetically mediated thermogenesis. Am J Physiol 1993; 264(27): E11–7

    PubMed  CAS  Google Scholar 

  122. Kjær M, Secher NH, Galbo H. Physical stress and catecholamine release. Bailliéres Clin Endocrinol Metab 1987; 1: 279–89

    Article  PubMed  Google Scholar 

  123. Cain SM. Exercise O2 debts of dogs at ground level and at altitude with and without β-block. J Appl Physiol 1971; 30: 838–43

    PubMed  CAS  Google Scholar 

  124. Bahr R, Høstmark AT, Newsholme EA, et al. Effect of exercise on recovery changes in plasma levels of FFA, glycerol, glucose and catecholamines. Acta Physiol Scand 1991 Sep; 143(1): 105–15

    Article  PubMed  CAS  Google Scholar 

  125. Wahrenberg H, Engfeldt P, Bolinder J, et al. Acute adaptation in adrenergic control of lipolysis during physical exercise in humans. Am J Physiol 1987; 253(16): E383–90

    PubMed  CAS  Google Scholar 

  126. Savard R, Després JP, Marcotte M, et al. Acute effects of endurance exercise on human adipose tissue metabolism. Metabolism 1987; 36(5): 480–5

    Article  PubMed  CAS  Google Scholar 

  127. Landsberg L, Young JB. Catecholamines and the adrenal medulla. In: Wilson JD, Foster DW, editors. Textbook of endocrinology. 8th ed. Philadelphia (PA): WB Saunders Company, 1992: 621–81

    Google Scholar 

  128. Vira A. Postexercise recovery period: carbohydrate and protein metabolism. Scand J Med Sci Sports 1996; 6: 2–14

    Article  Google Scholar 

  129. Rennie MJ, Edwards RHT, Krywawych S, et al. Effect of exercise on protein turnover in man. Clin Sci 1981; 61: 627–39

    PubMed  CAS  Google Scholar 

  130. Devlin JT, Brodsky I, Scrimgeour A, et al. Amino acid metabolism after intense exercise. Am J Physiol 1990; 258: E249–55

    PubMed  CAS  Google Scholar 

  131. Carraro F, Stuart CA, Hartl WH, et al. Effects of exercise and recovery on muscle protein synthesis in human subjects. Am J Physiol 1990; 259: E470–6

    PubMed  CAS  Google Scholar 

  132. Biolo G, Maggi SP, Williams BD, et al. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 1995; 268(31): E514–20

    PubMed  CAS  Google Scholar 

  133. Phillips SM, Tipton KD, Aarsland A, et al. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 1997 Jul; 273 (1 Pt 1): E99–107

    PubMed  CAS  Google Scholar 

  134. Bangsbo J, Gollnick PD, Graham TE, et al. Substrates for muscle glycogen synthesis in recovery from intense exercise in man. J Physiol 1991; 434: 423–40

    PubMed  CAS  Google Scholar 

  135. Chin ER, Lindinger MI, Heigenhauser GJF. Lactate metabolism in inactive skeletal muscle during lactacidosis. Am J Physiol 1991; 261: R98–105

    PubMed  CAS  Google Scholar 

  136. Bangsbo J, Graham T, Johansen L, et al. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise. J Appl Physiol 1994; 77(4): 1890–5

    PubMed  CAS  Google Scholar 

  137. Scott CB. Re-interpreting anaerobic metabolism: an argument for the application of both anaerobic glycolysis and excess post-exercise oxygen consumption (EPOC) as independent sources of energy expenditure. Eur J Appl Physiol 1998; 77: 200–5

    Article  CAS  Google Scholar 

  138. Vidal-Puig A, Solanes G, Grujic D, et al. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun 1997; 235: 79–82

    Article  PubMed  CAS  Google Scholar 

  139. Fleury C, Neverova M, Collins S, et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 1997; 15(3): 269–72

    Article  PubMed  CAS  Google Scholar 

  140. Boss O, Samec S, Paoloni-Giacobino A, et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 1997; 408: 39–42

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabet Børsheim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Børsheim, E., Bahr, R. Effect of Exercise Intensity, Duration and Mode on Post-Exercise Oxygen Consumption. Sports Med 33, 1037–1060 (2003). https://doi.org/10.2165/00007256-200333140-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200333140-00002

Keywords

Navigation