Skip to main content

Advertisement

Log in

Heart Rate Variability in Athletes

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

This review examines the influence on heart rate variability (HRV) indices in athletes from training status, different types of exercise training, sex and ageing, presented from both cross-sectional and longitudinal studies. The predictability of HRV in over-training, athletic condition and athletic performance is also included. Finally, some recommendations concerning the application of HRV methods in athletes are made.

The cardiovascular system is mostly controlled by autonomic regulation through the activity of sympathetic and parasympathetic pathways of the autonomic nervous system. Analysis of HRV permits insight in this control mechanism. It can easily be determined from ECG recordings, resulting in time series (RR-intervals) that are usually analysed in time and frequency domains. As a first approach, it can be assumed that power in different frequency bands corresponds to activity of sympathetic (0.04–0.15Hz) and parasympathetic (0.15–0.4Hz) nerves. However, other mechanisms (and feedback loops) are also at work, especially in the low frequency band.

During dynamic exercise, it is generally assumed that heart rate increases due to both a parasympathetic withdrawal and an augmented sympathetic activity. However, because some authors disagree with the former statement and the fact that during exercise there is also a technical problem related to the non-stationary signals, a critical look at interpretation of results is needed.

It is strongly suggested that, when presenting reports on HRV studies related to exercise physiology in general or concerned with athletes, a detailed description should be provided on analysis methods, as well as concerning population, and training schedule, intensity and duration. Most studies concern relatively small numbers of study participants, diminishing the power of statistics. Therefore, multicentre studies would be preferable.

In order to further develop this fascinating research field, we advocate prospective, randomised, controlled, long-term studies using validated measurement methods. Finally, there is a strong need for basic research on the nature of the control and regulating mechanism exerted by the autonomic nervous system on cardiovascular function in athletes, preferably with a multidisciplinary approach between cardiologists, exercise physiologists, pulmonary physiologists, coaches and biomedical engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Table II
Table III
Table IV
Fig. 5
Table V
Table VI

Similar content being viewed by others

References

  1. Vatner SF, Pagani M. Cardiovascular adjustments to exercise: hemodynamics and mechanisms. Prog Cardiovasc Dis 1976; 19(2): 91–108

    PubMed  CAS  Google Scholar 

  2. Brooks GA, Fahey TD, White TP. Exercise physiology: human bioenergetics and its applications. 2nd ed. Mountain View (CA): Mayfield Publishing Co., 1995

    Google Scholar 

  3. Fagard RH. Impact of different sports and training on cardiac structure and function. Cardiol Clin 1992; 10(2): 241–56

    PubMed  CAS  Google Scholar 

  4. Fagard R, Aubert AE, Lysens R, et al. Noninvasive assessment of seasonal variations in cardiac structure and function in cyclists. Circulation 1983; 67(4): 896–901

    PubMed  CAS  Google Scholar 

  5. Fagard R, Aubert AE, Staessen J, et al. Cardiac structure and function in cyclists and runners: comparative echocardiographic study. Br Heart J 1984; 52(2): 124–9

    PubMed  CAS  Google Scholar 

  6. Hainsworth R. Physiology of the cardiac autonomic system. In: Malik M, editor. Clinical guide to cardiac autonomic tests. Dordrecht: Kluwer Academic Publishers, 1998

    Google Scholar 

  7. Levy MN, Martin PJ. Neural control of the heart. In: Berne RM, editor. Handbook of physiology. Bethesda (MD): American Physiological Society, 1979: 581–620

    Google Scholar 

  8. Persson PB. Modulation of cardiovascular control mechanism and their interaction. Phys Rev A 1996; 76: 193–244

    CAS  Google Scholar 

  9. Natelson BH. Neurocardiology, an interdisciplinary area for the 80s. Arch Neurol 1985; 42: 178–84

    PubMed  CAS  Google Scholar 

  10. Malik M, Camm AJ. Heart rate variability. Clin Cardiol 1990; 13(8): 570–6

    PubMed  CAS  Google Scholar 

  11. Aubert AE, Ramaekers D. Neurocardiology: the benefits of irregularity: the basics of methodology, physiology and current clinical applications. Acta Cardiol 1999; 54(3): 107–20

    PubMed  CAS  Google Scholar 

  12. Pumprla J, Howorka K, Groves D, et al. Functional assessment of heart rate variability: physiological basis and practical applications. Int J Cardiol 2002; 84: 1–14

    PubMed  Google Scholar 

  13. Ramaekers D. Effects of melanocortins and N-terminal proopiomelanocortin on cardiovascular function and autonomic dynamics. Acta Biomedica Lovaniensia. Vol. 194. Leuven: Leuven University Press, 1999: 130

    Google Scholar 

  14. Akselrod S, Gordon D, Ubel FA, et al. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 1981; 213(4504): 220–2

    PubMed  CAS  Google Scholar 

  15. Eckberg DL, Fritsch JM. Human autonomic responses to actual and simulated weightlessness. J Clin Pharmacol 1991; 31(10): 951–5

    PubMed  CAS  Google Scholar 

  16. Beckers F, Ramaekers D, Aubert AE. ACTS: automated calculation of tachograms and systograms. Prog Biomed Res 1999; 4: 160–5

    Google Scholar 

  17. Kamath MV, Fallen EL. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng 1993; 21(3): 245–311

    PubMed  CAS  Google Scholar 

  18. Aubert AE, Ramaekers D, Beckers F, et al. The analysis of heart rate variability in unrestrained rats: validation of method and results. Comput Methods Programs Biomed 1999; 60(3): 197–213

    PubMed  CAS  Google Scholar 

  19. de Boer RW, Karemaker JM, Strackee J. Comparing spectra of a series of point events particularly for heart rate variability data. IEEE Trans Biomed Eng 1984; 31: 384–7

    Google Scholar 

  20. de Boer RW, Karemaker JM, Strackee J. Spectrum of a series of point events, generated by the integral pulse frequency modulation model. Med Biol Eng Comput 1985; 23(2): 138–42

    PubMed  Google Scholar 

  21. Parati G, Casadei R, Groppelli A, et al. Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension 1989; 13 (6 Pt 1): 647–55

    PubMed  CAS  Google Scholar 

  22. Mulder LJM, Veldman JBP, Ruddel H, et al. On the usefulness of finger-pressure measurements for studies on mental workload. Homeostasis 1991; 33: 47–60

    PubMed  CAS  Google Scholar 

  23. Sato T, Nishinaga M, Kawamoto A, et al. Accuracy of a continuous blood pressure monitor based on arterial tonometry. Hypertension 1993; 21: 866–74

    PubMed  CAS  Google Scholar 

  24. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996; 93(5): 1043–65

    Google Scholar 

  25. Kleiger RE, Stein PK, Bosner MS, et al. Time domain measurements of heart rate variability. Cardiol Clin 1992; 10(3): 487–98

    PubMed  CAS  Google Scholar 

  26. Aubert AE, Ramaekers D, Beckers F, et al. TIFAHR: time- and frequency analysis of heart rate variability: pitfalls and misinterpretations. In: Monduzzi SPA, editor. XIII World Congress of Cardiology. Bologna: Litosei Press, 1998: 323–7

    Google Scholar 

  27. Aubert AE, Beckers F, Ramaekers D. Short-term heart rate variability in young athletes. J Cardiol 2001; 37: 85–8

    PubMed  Google Scholar 

  28. Malik M, Camm A. Heart rate variability. Armonk (NY): Futura Publishing Co., 1995

    Google Scholar 

  29. Akselrod S. Spectral analysis of fluctuations in cardiovascular parameters: a quantitative tool for the investigation of autonomic control. Trends Pharmacol Sci 1988; 9(1): 6–9

    PubMed  CAS  Google Scholar 

  30. Bartoli F, Baselli G, Cerutti S. AR identification and spectral estimate applied to the R-R interval measurements. Int J Biomed Comput 1985; 16(3–4): 201–15

    PubMed  CAS  Google Scholar 

  31. Verlinde D, Beckers F, Ramaekers D, et al. Wavelet decomposition analysis of heart rate variability in aerobic athletes. Auton Neurosci 2001 Jul 20; 90(1–2): 138–41

    PubMed  CAS  Google Scholar 

  32. Cottin F, Billat L, Durbin F, et al. Effects of fatigue on spontaneous velocity variations in human middle-distance running: use of short-term Fourier transform. Eur J Appl Physiol 2002; 87: 17–27

    PubMed  CAS  Google Scholar 

  33. Fagard RH, Pardaens K, Staessen JA, et al. Power spectral analysis of heart rate variability by autoregressive modelling and fast Fourier transform: a comparative study. Acta Cardiol 1998; 53(4): 211–8

    PubMed  CAS  Google Scholar 

  34. Mansier P, Clairambault J, Charlotte N, et al. Linear and nonlinear analyses of heart rate variability: a minireview. Cardiovasc Res 1996; 31(3): 371–9

    PubMed  CAS  Google Scholar 

  35. Chess GF, Tam RMK, Calarescu FR. Influence of cardiac neural inputs on rhythmic variations of heart period in the cat. Am J Physiol 1975; 228: 775–80

    PubMed  CAS  Google Scholar 

  36. Convertino VA. G-factor as a tool in basic research: mechanisms of orthostatic tolerance. J Gravit Physiol 1999 Jul; 6(1): 73–6

    Google Scholar 

  37. Selman A, McDonald A, Kitney R, et al. The interaction between heart rate and respiration. Part I: experimental studies in man. Automedica 1982; 4: 131–9

    Google Scholar 

  38. Eckberg DL. Sympathovagal balance: a critical appraisal. Circulation 1997; 96(9): 3224–32

    PubMed  CAS  Google Scholar 

  39. Malliani A, Pagani M, Lombardi F, et al. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991; 84(2): 482–92

    PubMed  CAS  Google Scholar 

  40. Bigger Jr JT, Steinman RC, Rolnitzky LM, et al. Power law behavior of RR-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants. Circulation 1996; 93(12): 2142–51

    PubMed  Google Scholar 

  41. Kobayashi M, Musha T. 1/f fluctuation of heartbeat period. IEEE Trans Biomed Eng 1982; 29(6): 456–7

    PubMed  CAS  Google Scholar 

  42. Saul JP, Arai Y, Berger RD, et al. Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol 1988; 61(15): 1292–9

    PubMed  CAS  Google Scholar 

  43. Wagner CD, Persson PB. Chaos in the cardiovascular system: an update. Cardiovasc Res 1998; 40(2): 257–64

    PubMed  CAS  Google Scholar 

  44. Pagani M, Furlan R, Dell’Orto S, et al. Continuous recording of direct high fidelity arterial pressure and electrocardiogram in ambulant patients. Cardiovasc Res 1986; 20(5): 384–8

    PubMed  CAS  Google Scholar 

  45. Beckers F, Ramaekers D, Aubert AE. Nonlinear dynamics in heart rate variability. IEEE Comp Cardiol 2000; 27: 131–4

    Google Scholar 

  46. Aubert AE, Ramaekers D. Heart rate variability: is there more information in spectral analysis or in methods of nonlinear dynamics? Med Biol Eng Comput 1999; 37Suppl. 2: 378–9

    Google Scholar 

  47. Lombardi F, Sandrone G, Pernpruner S, et al. Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction. Am J Cardiol 1987; 60(16): 1239–45

    PubMed  CAS  Google Scholar 

  48. Beckers F. Non-linear dynamics of cardiovascular variabilty: validation and clinical applications. Acta Biomedica Lovaniensia. Vol. 266. Leuven: Leuven University Press, 2002: 155

    Google Scholar 

  49. Schmidt G, Morfill GE. Complexity diagnostics in cardiology: fundamental considerations. Pacing Clin Electrophysiol 1994; 17(6): 1174–7

    PubMed  CAS  Google Scholar 

  50. Nakamura Y, Yamamoto Y, Muraoka I. Autonomic control of heart rate during physical exercise and fractal dimension of heart rate variability. J Appl Physiol 1993; 74(2): 875–81

    PubMed  CAS  Google Scholar 

  51. Tulppo MP, Hughson RL, Makikallio TH, et al. Effects of exercise and passive head-up tilt on fractal and complexity properties of heart rate dynamics. Am J Physiol Heart Circ Physiol 2001; 280(3): H1081–7

    PubMed  CAS  Google Scholar 

  52. Bogaert C, Beckers F, Ramaekers D, et al. Analysis of heart rate variability with correlation dimension method in a normal population and in heart transplant patients. Auton Neurosci 2001; 90(1–2): 142–7

    PubMed  CAS  Google Scholar 

  53. Beckers F, Ramaekers D, Aubert AE. Approximate entropy of heart rate variability: validation of methods and application in heart failure. Cardiovasc Eng 2001; 1: 177–82

    Google Scholar 

  54. Casaleggio A, Cerutti S, Signorini MG. Study of the Lyapunov exponents in heart rate variability signals. Methods Inf Med 1997; 36(4–5): 274–7

    PubMed  CAS  Google Scholar 

  55. Malliani A. Principles of cardiovascular neural regulation in health and disease. Dordrecht: Kluwer Academic Publishers, 2000

    Google Scholar 

  56. Eckberg DL, Sleight P. Human baroreflexes in health and disease. Oxford: Clarendon Press, 1992

    Google Scholar 

  57. Smith SA, Stallard TJ, Salih MM. Can sinoaortic baroreceptor heart rate reflex be determined from phase 4 of the valslava manoeuver. Cardiovasc Res 1987; 21: 422–7

    PubMed  CAS  Google Scholar 

  58. Smyth HS, Sleight P, Pickering GW. Reflex regulation of arterial pressure during sleep in man: a quantitative method of assessing baroreflex sensitivity. Circ Res 1969; 24: 109–21

    PubMed  CAS  Google Scholar 

  59. Bernardi L, Savioli R, Spodick DH. Do hemodynamic responses to the valsalva manoeuvre reflect myocardial dysfunction? Chest 1989; 95: 986–91

    PubMed  CAS  Google Scholar 

  60. Eckberg DL, Cavanaugh MS, Mark AL. A simplified neck suction device for activation of carotid baroreceptors. J Lab Clin Med 1975; 85: 167–73

    PubMed  CAS  Google Scholar 

  61. Smith SA, Querry RG, Fadel PJ, et al. Differential baroreflex control of heart rate in sedentary and aerobically fit individuals. Med Sci Sports Exerc 2000; 32(8): 1419–30

    PubMed  CAS  Google Scholar 

  62. Eckberg DL. Parasympathetic cardiovascular control in human disease: a critical review of methods and results. Am J Physiol 1980; 239: H581–93

    PubMed  CAS  Google Scholar 

  63. Ludbrook J. Concern about gain: is this the best measure of performance of cardiovascular reflexes? Clin Exp Pharmacol Physiol 1984; 11: 385–90

    PubMed  CAS  Google Scholar 

  64. Robbe HW, Mulder LJ, Ruddel H, et al. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension 1987; 10: 538–43

    PubMed  CAS  Google Scholar 

  65. Bertinieri G, Di Rienzo M, Cavallazzi A, et al. A new approach to analysis of the arterial baroreflex. J Hypertens Suppl 1985; 3Suppl. 3: S79–81

    PubMed  CAS  Google Scholar 

  66. Ducher M, Cerutti C, Gustin MP, et al. Statistical relationships between systolic blood pressure and heart rate and their functional significance in conscious rats. Med Biol Eng Comput 1994; 32(6): 649–55

    PubMed  CAS  Google Scholar 

  67. Ramaekers D, Beckers F, Demeulemeester H, et al. Effects of melanocortins on cardiovascular regulation in rats. Clin Exp Pharmacol Physiol 2002; 29: 549–58

    PubMed  CAS  Google Scholar 

  68. Ramaekers D, Beckers F, Demeulemeester H, et al. Cardiovascular autonomic function in conscious rats: a novel approach to facilitate stationary conditions. Ann Nonivasive Electrocardiol 2002; 7: 307–18

    Google Scholar 

  69. Ramaekers D, Ector H, Aubert AE, et al. Heart rate variability and heart rate in healthy volunteers: is the female autonomic nervous system cardioprotective? Eur Heart J 1998; 19(9): 1334–41

    PubMed  CAS  Google Scholar 

  70. Migliaro ER, Contreras P, Bech S, et al. Relative influence of age, resting heart rate and sedentary life style in short-term analysis of heart rate variability. Braz J Med Biol Res 2001; 34(4): 493–500

    PubMed  CAS  Google Scholar 

  71. Dishman RK, Nakamura Y, Garcia ME, et al. Heart rate variability, trait anxiety, and perceived stress among physically fit men and women. Int J Psychophysiol 2000; 37(2): 121–33

    PubMed  CAS  Google Scholar 

  72. Ramaekers D, Ector H, Demyttenaere K, et al. Association between cardiac autonomic function and coping style in healthy subjects. Pacing Clin Electrophysiol 1998; 21(8): 1546–52

    PubMed  CAS  Google Scholar 

  73. Merz CN, Pardo Y. Mental versus physical stress, QT prolongation, and the autonomic nervous system. Circulation 2000; 101(22): E213–4

    PubMed  CAS  Google Scholar 

  74. Hayano J, Yamada M, Sakakibara Y, et al. Short and long term effects of cigarette smoking on HRV. Am J Cardiol 1990; 65: 84–8

    PubMed  CAS  Google Scholar 

  75. Niedermaier O, Smith M, Beigthol M, et al. Influence of cigarette smoking on human autonomic nervous system. Circulation 1993; 88: 562–71

    PubMed  CAS  Google Scholar 

  76. Kolodiichik E, Arushanian EB. The effect of caffeine on the cardiac intervalogram indices depending on the ovarian cycle phase in women. Farmakol Toksikol 1991; 54: 28–30

    Google Scholar 

  77. Nishijima Y, Ikeda T, Takamatsu M, et al. Influence of caffeine ingestion on autonomic nervous activity during exercise in humans. Eur J Appl Physiol 2002; 87: 475–80

    PubMed  CAS  Google Scholar 

  78. Weise F, Muller D, Krell D, et al. Heart rate variability in chronic alcoholics: a follow-up study. Drug Alcohol Depend 1986; 17(4): 365–8

    PubMed  CAS  Google Scholar 

  79. Hirsch JA, Bishop B, Yook JL. Recovery of respiratory sinus arrhythmia in detoxified alcohol subjects. J Appl Physiol 1993; 74: 1816–23

    PubMed  CAS  Google Scholar 

  80. La Rovere MT, Bigger Jr JT, Marcus FI, et al. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 1998; 351(9101): 478–84

    PubMed  Google Scholar 

  81. Cole CR, Blackstone EH, Pashkow FJ, et al. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 1999; 341(18): 1351–7

    PubMed  CAS  Google Scholar 

  82. Desai MY, Pena-Almaguer E, Mannting F. Abnormal heart rate recovery after exercise: a comparison with known indicators of increased mortality. Cardiology 2001; 96(1): 38–44

    PubMed  CAS  Google Scholar 

  83. Deligiannis A, Kouidi E, Tourkantonis A. Effects of physical training on heart rate variability in patients on hemodialysis. Am J Cardiol 1999; 84(2): 197–202

    PubMed  CAS  Google Scholar 

  84. Ponikowski P, Chua TP, Piepoli M, et al. Ventilatory response to exercise correlates with impaired heart rate variability in patients with chronic congestive heart failure. Am J Cardiol 1998; 82(3): 338–44

    PubMed  CAS  Google Scholar 

  85. Bernardi L, Salvucci F, Suardi R, et al. Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal dynamic exercise? Cardiovasc Res 1990; 24(12): 969–81

    PubMed  CAS  Google Scholar 

  86. Bernardi L. Clinical evaluation of arterial baroreflex activity in diabetes. Diabetes Nutr Metab 2000; 13(6): 331–40

    PubMed  CAS  Google Scholar 

  87. Narkiewicz K, Somers VK. Endurance training in mild hypertension: effects on ambulatory blood pressure and neural circulatory control. Blood Press Monit 1997; 2(5): 229–35

    PubMed  Google Scholar 

  88. Kontopoulos AG, Athyros VG, Papageorgiou AA, et al. Effect of angiotensin-converting enzyme inhibitors on the power spectrum of heart rate variability in post-myocardial infarction patients. Coron Artery Dis 1997; 8(8–9): 517–24

    PubMed  CAS  Google Scholar 

  89. Kontopoulos AG, Athyros VG, Didangelos TP, et al. Effect of chronic quinapril administration on heart rate variability in patients with diabetic autonomic neuropathy. Diabetes Care 1997; 20(3): 355–61

    PubMed  CAS  Google Scholar 

  90. Perticone F, Ceravolo R, Maio R, et al. Heart rate variability and sudden infant death syndrome. Pacing Clin Electrophysiol 1990; 13 (12 Pt 2): 2096–9

    PubMed  CAS  Google Scholar 

  91. Harrison MH. Athletes, astronauts and orthostatic tolerance. Sports Med 1986; 3(6): 428–35

    PubMed  CAS  Google Scholar 

  92. Seps B, Beckers F, Ramaekers D, Aubert AE. Acute heart rate response to weightlessness during parabolic flight. Brussels: Federal Office for Scientific, Technical and Cultural Affairs, 2002: 151–8

    Google Scholar 

  93. Iellamo F, Legramante JM, Massaro M, et al. Effects of a residential exercise training on baroreflex sensitivity and heart rate variability in patients with coronary artery disease: a randomized, controlled study. Circulation 2000; 102(21): 2588–92

    PubMed  CAS  Google Scholar 

  94. Beckers F, Ramaekers D, Aubert AE, et al. Intracardiac heart rate variability of the native sinus node in heart transplant patients. Med Biol Eng Comput 1999; 37Suppl. 1: 232–3

    Google Scholar 

  95. Beckers F, Ramaekers D, van Cleemput J, et al. Association between restoration of autonomic modulation in the native sinus node and haemodynamic improvement after cardiac transplantation. Transplantation 2002; 73: 1614–20

    PubMed  Google Scholar 

  96. Rost R, Hollman W. Athlete’s heart: a review of its historical assessment and new aspects. Int J Sports Med 1983; 4: 147–65

    PubMed  CAS  Google Scholar 

  97. Roy A, Doyon M, Dumesnil JG. Endurance vs strength training: comparison of cardiac structures using normal predicted values. J Appl Physiol 1988; 64: 2552–7

    PubMed  CAS  Google Scholar 

  98. Pelliccia A, Maron BJ, Culasso F, et al. Athlete’s heart in women. JAMA 1996; 276: 1048–54

    Google Scholar 

  99. Zemva A, Rogel P. Gender differences in athlete’s heart: association with 24-h blood pressure: a study of pairs in sport dancing. Int J Cardiol 2001; 77(1): 49–54

    PubMed  CAS  Google Scholar 

  100. Janicki JS, Sheriff DD, Robotham JL, et al. Cardiac output during exercise: contributions of the cardiac, circulatory, and respiratory systems. In: Rowell LB, Shepherd JT, editors. Handbook of physiology: exercise regulation and integration of multiple systems. New York: American Physiological Society, 1996; (12): 649–704

    Google Scholar 

  101. Mazzeo RS, Marshall P. Influence of plasma catecholamine on the lactate threshold during graded exercise. J Appl Physiol 1989; 67: 1319–22

    PubMed  CAS  Google Scholar 

  102. Roeske WR, O’Rourke RA, Klein A. Noninvasive determination of ventricular hypertrophy in professional athletes. Circulation 1976; 53: 286–91

    PubMed  CAS  Google Scholar 

  103. Huston TP, Puffer JC, Rodney WM. The athletic heart syndrome. N Engl J Med 1985; 313: 24–32

    PubMed  CAS  Google Scholar 

  104. Orizio C, Perini R, Comande A, et al. Plasma cathecolamines and heart rate at the beginning of muscular exercise inman. Eur J Appl Physiol 1988; 57: 644–51

    CAS  Google Scholar 

  105. O’Sullivan SE, Bell C. The effects of exercise and training on human cardiovascular reflex control. J Auton Nerv Syst 2000; 81(1–3): 16–24

    PubMed  Google Scholar 

  106. Uusitalo AL, Tahvanainen KU, Uusitalo AJ, et al. Non-invasive evaluation of sympathovagal balance in athletes by time and frequency domain analyses of heart rate and blood pressure variability. Clin Physiol 1996; 16(6): 575–88

    PubMed  CAS  Google Scholar 

  107. Seals DR, Chase PB. Influence of physical training on heart rate variability and baroreflex circulatory control. J Appl Physiol 1989; 66: 1886–95

    PubMed  CAS  Google Scholar 

  108. Stein R, Moraes RS, Cavalcanti AV, et al. Atrial automaticity and atrioventricular conduction in athletes: contribution of autonomic regulation. Eur J Appl Physiol 2000; 82(1–2): 155–7

    PubMed  CAS  Google Scholar 

  109. Stein R, Medeiros CM, Rosito GA, et al. Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. J Am Coll Cardiol 2002; 39(6): 1033–8

    PubMed  Google Scholar 

  110. Mangin L, Kobeissi A, Lelouche D, et al. Simultaneous analysis of heart rate variability and myocardial contractility during head-up tilt in patients with vasovagal syncope. J Cardiovasc Electrophysiol 2001; 12(6): 639–44

    PubMed  CAS  Google Scholar 

  111. Matsumoto T, Miyawaki T, Ue H, et al. Autonomic responsiveness to acute cold exposure in obese and non-obese young women. Int J Obes Relat Metab Disord 1999; 23(8): 793–800

    PubMed  CAS  Google Scholar 

  112. Bernardi L, Passino C, Spadacini G, et al. Cardiovascular autonomic modulation and activity of carotid baroreceptors at altitude. Clin Sci (Lond) 1998; 95(5): 565–73

    CAS  Google Scholar 

  113. McCraty R, Atkinson M, Tiller WA, et al. The effects of emotions on short-term power spectrum analysis of heart rate variability. Am J Cardiol 1995; 76(14): 1089–93

    PubMed  CAS  Google Scholar 

  114. McCole SD, Brown MD, Moore GE, et al. Enhanced cardiovascular hemodynamics in endurance-trained postmenopausal women athletes. Med Sci Sports Exerc 2000; 32: 1073–9

    PubMed  CAS  Google Scholar 

  115. DiCarlo SE, Bishop VS. Exercise training enhances cardiac afferent inhibition of baroreflex function. Am J Physiol 1990; 258: H212–20

    PubMed  CAS  Google Scholar 

  116. Iellamo F. Neural control of the cardiovascular system during exercise. Ital Heart J 2001; 2(3): 200–12

    PubMed  CAS  Google Scholar 

  117. Bernardi L, Passino C, Robergs R, et al. Acute and persistent effects of a 46-kilometer wilderness trail run at altitude: cardiovascular autonomic modulation and baroreflexes. Cardiovasc Res 1997; 34(2): 273–80

    PubMed  CAS  Google Scholar 

  118. Halliwill JR, Taylor JA, Hartwig TD, et al. Augmented baroreflex heart rate gain after moderate-intensity, dynamic exercise. Am J Physiol 1996; 270 (2 Pt 2): R420–6

    PubMed  CAS  Google Scholar 

  119. Grassi G, Seravalle G, Calhoun DA, et al. Physical training and baroreceptor control of sympathetic nerve activity in humans. Hypertension 1994; 23: 294–301

    PubMed  CAS  Google Scholar 

  120. Negrao CE, Irigoyen MC, Moreira ED, et al. Effect of exercise training on RSNA, baroreflex control and blood pressure responsiveness. Am J Physiol 1993; 265: R365–70

    PubMed  CAS  Google Scholar 

  121. Robinson BF, Epstein SE, Beiser GD, et al. Control of heart rate by the autonomic nervous system: studies in man on the interrelation between baroreceptor mechanisms and exercise. Circ Res 1966; 19(2): 400–11

    PubMed  CAS  Google Scholar 

  122. Schwartz PJ, Verrier RL, Lown B. Effect of autonomic blockade and vagotomy on ventricular refractoriness in dogs. Circ Res 1977; 44: 637–45

    Google Scholar 

  123. Malpas SC. Neural influences on cardiovascular variability: possibilities and pitfalls. Am J Physiol Heart Circ Phys 2002; 282: H6–H20

    CAS  Google Scholar 

  124. Roure R, Collet C, Deschaumes-Molinaro C, et al. Autonomic nervous system responses correlate with mental rehearsal in volleyball training. Eur J Appl Physiol Occup Physiol 1998; 78(2): 99–108

    PubMed  CAS  Google Scholar 

  125. Collet C, Roure R, Delhomme G, et al. Autonomic nervous system responses as performance indicators among volleyball players. Eur J Appl Physiol Occup Physiol 1999; 80: 41–51

    PubMed  CAS  Google Scholar 

  126. Perini R, Orizio C, Baselli G, et al. The influence of exercise intensity on the power spectrum of heart rate variability. Eur J Appl Physiol Occup Physiol 1990; 61(1–2): 143–8

    PubMed  CAS  Google Scholar 

  127. Arai Y, Saul JP, Albrecht P, et al. Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol 1989; 256 (1 Pt 2): H132–41

    PubMed  CAS  Google Scholar 

  128. Iellamo F. Neural mechanisms of cardiovascular regulation during exercise. Auton Neurosci 2001; 20: 66–75

    Google Scholar 

  129. Bernardi L, Piepoli M. Autonomic nervous system adaptation during physical exercise. Ital Heart J 2001; 2: 831–9

    CAS  Google Scholar 

  130. Brenner IK, Thomas S, Shephard RJ. Autonomic regulation of the circulation during exercise and heat exposure: inferences from heart rate variability. Sports Med 1998; 26(2): 85–99

    PubMed  CAS  Google Scholar 

  131. Kamath MV, Fallen EL, McKelvie R. Effects of steady state exercise on the power spectrum of heart rate variability. Med Sci Sports Exerc 1991; 23(4): 428–34

    PubMed  CAS  Google Scholar 

  132. Maciel BC, Gallo Jr L, Marin Neto JA, et al. Autonomic nervous control of the heart rate during dynamic exercise in normal man. Clin Sci (Colch) 1986; 71(4): 457–60

    CAS  Google Scholar 

  133. Shin K, Minamitani H, Onishi S, et al. The power spectral analysis of heart rate variability in athletes during dynamic exercise: part II. Clin Cardiol 1995; 18: 664–8

    PubMed  CAS  Google Scholar 

  134. Shin K, Minamitani H, Onishi S, et al. The power spectral analysis of heart rate variability in athletes during dynamic exercise: part I. Clin Cardiol 1995; 18(10): 583–6

    PubMed  CAS  Google Scholar 

  135. Warren JH, Jaffe RS, Wraa CE, et al. Effect of autonomic blockade on power spectrum of heart rate variability during exercise. Am J Physiol1997; 273 (2 Pt 2): R495–502

    PubMed  CAS  Google Scholar 

  136. Cottin F, Papelier Y, Escourrou P. Effects of exercise load and breathing frequency on heart rate and blood pressure variability during dynamic exercise. Int J Sports Med 1999; 20: 232–8

    PubMed  CAS  Google Scholar 

  137. Casadei B, Moon J, Johnston J, et al. Is respiratory sinus arrhthymia a good index of cardiac vagal tone in exercise? J Appl Physiol 1996; 81: 556–64

    PubMed  CAS  Google Scholar 

  138. Casadei B, Cochrane JE, Johnston J, et al. Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiol Scand 1995; 153: 125–31

    PubMed  CAS  Google Scholar 

  139. Yamamoto Y, Hughson RL, Nakamura Y. Autonomic nervous system responses to exercise in relation to ventilatory threshold. Chest 1992; 101 (5 Suppl.): 206S–10S

    PubMed  CAS  Google Scholar 

  140. Tulppo MP, Makikallio TH, Takala TE, et al. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol 1996; 271 (1 Pt 2): H244–52

    PubMed  CAS  Google Scholar 

  141. Anosov O, Patzak A, Kononovich Y, et al. High-frequency oscillations of the heart rate during ramp load reflect the human anaerobic threshold. Eur J Appl Physiol 2000; 83(4–5): 388–94

    PubMed  CAS  Google Scholar 

  142. Gonzalez-Camarena R, Carrasco-Sosa S, Roman-Ramos R, et al. Effect of static and dynamic exercise on heart rate and blood pressure variabilities. Med Sci Sports Exerc 2000; 32(10): 1719–28

    PubMed  CAS  Google Scholar 

  143. Aubert AE, Ramaekers D, Collier B, et al. Comparison of the effect of different types of exercise on short-term heart rate variability. Med Biol Eng Comput 1999; 37: 568–9

    Google Scholar 

  144. Dixon EM, Kamath MV, McCartney N, et al. Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovasc Res 1992; 26(7): 713–9

    PubMed  CAS  Google Scholar 

  145. Furlan R, Piazza S, Dell’Orto S, et al. Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovasc Res 1993; 27(3): 482–8

    PubMed  CAS  Google Scholar 

  146. Goldsmith RL, Bigger Jr JT, Steinman RC, et al. Comparison of 24-hour parasympathetic activity in endurance-trained and untrained young men. J Am Coll Cardiol 1992; 20(3): 552–8

    PubMed  CAS  Google Scholar 

  147. Janssen MJ, de Bie J, Swenne CA, et al. Supine and standing sympathovagal balance in athletes and controls. Eur J Appl Physiol Occup Physiol 1993; 67(2): 164–7

    PubMed  CAS  Google Scholar 

  148. Tonkins WP. Analysis of the relationship between exercise capacity and heart rate variability in trained and untrained individuals. Eugene (OR): University of Oregon, Microform Publications, 1999

    Google Scholar 

  149. Aubert AE, Ramaekers D, Cuche Y, et al. Effect of long-term physical training on heart rate variability. IEEE Comp Cardiol 1996; 16: 17–20

    Google Scholar 

  150. Puig J, Freitas J, Carvalho MJ, et al. Spectral analysis of heart rate variability in athletes. J Sports Med Phys Fitness 1993; 33(1): 44–8

    PubMed  CAS  Google Scholar 

  151. Jensen-Urstad K, Saltin B, Ericson M, et al. Pronounced resting bradycardia in male elite runners is associated with high heart rate variability. Scand J Med Sci Sports 1997; 7(5): 274–8

    PubMed  CAS  Google Scholar 

  152. Macor F, Fagard R, Amery A. Power spectral analysis of RR interval and blood pressure short-term variability at rest and during dynamic exercise: comparison between cyclists and controls. Int J Sports Med 1996; 17(3): 175–81

    PubMed  CAS  Google Scholar 

  153. Shin K, Minamitani H, Onishi S, et al. Autonomic differences between athletes and nonathletes: spectral analysis approach. Med Sci Sports Exerc 1997; 29(11): 1482–90

    PubMed  CAS  Google Scholar 

  154. De Meersman RE. Heart rate variability and aerobic fitness. Am Heart J 1993; 125(3): 726–31

    PubMed  Google Scholar 

  155. Catai AM, Chacon-Mikahil MP, Martinelli FS, et al. Effects of aerobic exercise training on heart rate variability during wake-fulness and sleep and cardiorespiratory responses of young and middle-aged healthy men. Braz J Med Biol Res 2002; 35(6): 741–52

    PubMed  CAS  Google Scholar 

  156. Katona PG, McLean M, Dighton DH, et al. Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J Appl Physiol 1982; 52(6): 1652–7

    PubMed  CAS  Google Scholar 

  157. Lazoglu AH, Glace B, Gleim GW, et al. Exercise and heart rate variability. Am Heart J 1996; 131(4): 825–6

    PubMed  CAS  Google Scholar 

  158. Melanson EL. Resting heart rate variability in men varying in habitual physical activity. Med Sci Sports Exerc 2000; 32(11): 1894–901

    PubMed  CAS  Google Scholar 

  159. Reiling MJ, Seals DR. Respiratory sinus arrhythmia and carotid baroreflex control of heart rate in endurance athletes and untrained controls. Clin Physiol 1988; 8(5): 511–9

    PubMed  CAS  Google Scholar 

  160. Smith ML, Hudson DL, Graitzer HM, et al. Exercise training bradycardia: the role of autonomic balance. Med Sci Sports Exerc 1989; 21(1): 40–4

    PubMed  CAS  Google Scholar 

  161. Goldsmith RL, Bigger Jr JT, Bloomfield DM, et al. Physical fitness as a determinant of vagal modulation. Med Sci Sports Exerc 1997; 29(6): 812–7

    PubMed  CAS  Google Scholar 

  162. Bonaduce D, Petretta M, Cavallaro V, et al. Intensive training and cardiac autonomic control in high level athletes. Med Sci Sports Exerc 1998; 30(5): 691–6

    PubMed  CAS  Google Scholar 

  163. Strano S, Lino S, Calcagnini G, et al. Respiratory sinus arrhythmia and cardiovascular neural regulation in athletes. Med Sci Sports Exerc 1998; 30(2): 215–9

    PubMed  CAS  Google Scholar 

  164. Malfatto G, Facchini M, Bragato R, et al. Short and long term effects of exercise training on the tonic autonomic modulation of heart rate variability after myocardial infarction. Eur Heart J 1996; 17(4): 532–8

    PubMed  CAS  Google Scholar 

  165. Malfatto G, Facchini M, Sala L, et al. Effects of cardiac rehabilitation and beta-blocker therapy on heart rate variability after first acute myocardial infarction. Am J Cardiol 1998; 81(7): 834–40

    PubMed  CAS  Google Scholar 

  166. Meyer M, Marconi C, Ferretti G, et al. Heart rate variability in the human transplanted heart: nonlinear dynamics and QT vs RR-QT alterations during exercise suggest a return of neurocardiac regulation in long-term recovery. Integr Physiol Behav Sci 1996; 31(4): 289–305

    PubMed  CAS  Google Scholar 

  167. Melanson EL, Freedson PS. The effect of endurance training on resting heart rate variability in sedentary adult males. Eur J Appl Physiol 2001; 85(5): 442–9

    PubMed  CAS  Google Scholar 

  168. Loimaala A, Huikuri H, Oja P, et al. Controlled 5-mo aerobic training improves heart rate but not heart rate variability or baroreflex sensitivity. J Appl Physiol 2000; 89(5): 1825–9

    PubMed  CAS  Google Scholar 

  169. Boutcher SH, Stein P. Association between heart rate variability and training response in sedentary middle-aged men. Eur J Appl Physiol Occup Physiol 1995; 70(1): 75–80

    PubMed  CAS  Google Scholar 

  170. Perini R, Fisher N, Veicsteinas A, et al. Aerobic training and cardiovascular responses at rest and during exercise in older men and women. Med Sci Sports Exerc 2002; 34: 700–8

    PubMed  Google Scholar 

  171. Schuit AJ, van Amelsvoort LG, Verheij TC, et al. Exercise training and heart rate variability in older people. Med Sci Sports Exerc 1999; 31(6): 816–21

    PubMed  CAS  Google Scholar 

  172. Al Ani M, Munir SM, White M, et al. Changes in R-R variability before and after endurance training measured by power spectral analysis and by the effect of isometric muscle contraction. Eur J Appl Physiol Occup Physiol 1996; 74(5): 397–403

    PubMed  CAS  Google Scholar 

  173. Davy KP, Willis WL, Seals DR. Influence of exercise training on heart rate variability in post-menopausal women with elevated arterial blood pressure. Clin Physiol 1997; 17(1): 31–40

    PubMed  CAS  Google Scholar 

  174. Levy WC, Cerqueira MD, Harp GD, et al. Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. Am J Cardiol 1998; 82(10): 1236–41

    PubMed  CAS  Google Scholar 

  175. Sacknoff DM, Gleim GW, Stachenfeld N, et al. Effect of athletic training on heart rate variability. Am Heart J 1994; 127(5): 1275–8

    PubMed  CAS  Google Scholar 

  176. Ryan SM, Goldberger AL, Pincus SM, et al. Gender- and age-related differences in heart rate dynamics: are women more complex than men? J Am Coll Cardiol 1994; 24(7): 1700–7

    PubMed  CAS  Google Scholar 

  177. Reardon M, Malik M. Changes in heart rate variability with age. Pacing Clin Electrophysiol 1996; 19 (11 Pt 2): 1863–6

    PubMed  CAS  Google Scholar 

  178. Ramaekers D, Ector H, Aubert AE. The influence of age and gender on heart rate variability (HRV). J Am Coll Cardiol 1999; 33(3): 900–2

    PubMed  CAS  Google Scholar 

  179. Kuo TB, Lin T, Yang CC, et al. Effect of aging on gender differences in neural control of heart rate. Am J Physiol 1999; 277 (6 Pt 2): H2233–9

    PubMed  CAS  Google Scholar 

  180. Tasaki H, Serita T, Irita A, et al. A 15-year longitudinal follow-up study of heart rate and heart rate variability in healthy elderly persons. J Gerontol A Biol Sci Med Sci 2000; 55(12): M744–9

    PubMed  CAS  Google Scholar 

  181. Sato N, Miyake S, Akatsu J, et al. Power spectral analysis of heart rate variability in healthy young women during the normal menstrual cycle. Psychosom Med 1995; 57(4): 331–5

    PubMed  CAS  Google Scholar 

  182. Saeki Y, Atogami F, Takahashi K, et al. Reflex control of autonomic function induced by posture change during the menstrual cycle. J Auton Nerv Syst 1997; 10: 69–74

    Google Scholar 

  183. Yildirir A, Kabakci G, Yarali H, et al. Effects of hormone replacement therapy on heart rate variability in postmenopausal women. Ann Noninvasive Electrocardiol 2001; 6(4): 280–4

    PubMed  CAS  Google Scholar 

  184. Boutcher SH, Meyer BJ, Craig GA, et al. Resting autonomic function in aerobically trained and untrained post-menopausal women. J Aging Phys Activity 1998; 6: 310–6

    Google Scholar 

  185. Davy KP, Miniclier NL, Taylor JA, et al. Elevated heart rate variability in physically active postmenopausal women: a cardioprotective effect? Am J Physiol 1996; 271 (2 Pt 2): H455–60

    PubMed  CAS  Google Scholar 

  186. Pigozzi F, Alabiso A, Parisi A, et al. Effects of aerobic exercise training on 24 hr profile of heart rate variability in female athletes. J Sports Med Phys Fitness 2001; 41(1): 101–7

    PubMed  CAS  Google Scholar 

  187. Hedelin R, Wiklund U, Bjerle P, et al. Pre- and post-season heart rate variability in adolescent cross-country skiers. Scand J Med Sci Sports 2000; 10(5): 298–303

    PubMed  CAS  Google Scholar 

  188. Muster AJ, Jungblutt PR, Quigg RJ, et al. Cardiopulmonary and cardiovascular physiology in elderly competitive endurance athletes. Am J Geriatr Cardiol 1999; 8: 162–8

    PubMed  Google Scholar 

  189. Galloway MT, Kadoko R, Joki P. Effect of aging on male and female master athlete’s performance in strength versus endurance activities. Am J Orthop 2002; 31: 93–8

    PubMed  Google Scholar 

  190. Menard D, Stanish WD. The aging athlete. Am J Sports Med 1989; 17: 187–96

    PubMed  CAS  Google Scholar 

  191. Yataco AR, Fleisher LA, Katzel LI. Heart rate variability and cardiovascular fitness in senior athletes. Am J Cardiol 1997; 80(10): 1389–91

    PubMed  CAS  Google Scholar 

  192. Banach T, Zoladz JA, Kolasinska-Kloch W, et al. The effect of aging on the activity of the autonomic nervous system in long distance runners. Folia Med Cracov 2000; 41(3–4): 113–20

    PubMed  CAS  Google Scholar 

  193. Jensen-Urstad K, Bouvier F, Saltin B, et al. High prevalence of arrhythmias in elderly male athletes with a lifelong history of regular strenuous exercise. Heart 1998; 79(2): 161–4

    PubMed  CAS  Google Scholar 

  194. Fry RW, Kraemer WJ. Resistance exercise overtraining and overreaching. Sports Med 1997; 23: 106–29

    PubMed  CAS  Google Scholar 

  195. Kuipers H, Keizer HA. Overtraining in elite athletes: review and directions for the future. Sports Med 1988; 6(2): 79–92

    PubMed  CAS  Google Scholar 

  196. Fry RW, Morton AR, Keast D. Overtraining in athletes. Sports Med 1991; 12: 32–65

    PubMed  CAS  Google Scholar 

  197. Lehmann M, Foster C, Keul J. Overtraining in endurance athletes: a brief overview. Med Sci Sports Exerc 1993; 25: 854–62

    PubMed  CAS  Google Scholar 

  198. Kuipers H. Training and overtraining: an introduction. Med Sci Sports Exerc 1998; 30(7): 1137–9

    PubMed  CAS  Google Scholar 

  199. Gastmann UA, Lehmann MJ. Overtraining and the BCAA hypothesis. Med Sci Sports Exerc 1998; 30(7): 1173–8

    PubMed  CAS  Google Scholar 

  200. Lehmann M, Foster C, Dickhuth HH, et al. Autonomic imbalance hypothesis and overtraining syndrome. Med Sci Sports Exerc 1998; 30(7): 1140–5

    PubMed  CAS  Google Scholar 

  201. Israel S. Problems of overtraining from an internal medical and performance physiological standpoint. Med Sport (Berl) 1976; 16: 1–12

    Google Scholar 

  202. Kindermann W. Overtraining: expression of a disturbed autonomic regulation [in German]. Dtsch Z Sportmed 1986; 8: 238–45

    Google Scholar 

  203. Hedelin R, Wiklund U, Bjerle P, et al. Cardiac autonomic imbalance in an overtrained athlete. Med Sci Sports Exerc 2000; 32(9): 1531–3

    PubMed  CAS  Google Scholar 

  204. Uusitalo AL, Uusitalo AJ, Rusko HK. Heart rate and blood pressure variability during heavy training and overtraining in the female athlete. Int J Sports Med 2000; 21(1): 45–53

    PubMed  CAS  Google Scholar 

  205. Uusitalo AL, Uusitalo AJ, Rusko HK. Endurance training, overtraining and baroreflex sensitivity in female athletes. Clin Physiol 1998; 18(6): 510–20

    PubMed  CAS  Google Scholar 

  206. Hedelin R, Kentta G, Wiklund U, et al. Short-term overtraining: effects on performance, circulatory responses, and heart rate variability. Med Sci Sports Exerc 2000; 32(8): 1480–4

    PubMed  CAS  Google Scholar 

  207. Portier H, Louisy F, Laude D, et al. Intense endurance training on heart rate and blood pressure variability in runners. Med Sci Sports Exerc 2001; 33(7): 1120–5

    PubMed  CAS  Google Scholar 

  208. Pichot V, Roche F, Gaspoz JM, et al. Relation between heart rate variability and training load in middle-distance runners. Med Sci Sports Exerc 2000; 32(10): 1729–36

    PubMed  CAS  Google Scholar 

  209. Monahan KD, Dinenno FA, Tanaka H, et al. Regular aerobic exercise modulates age-associated declines in cardiovagal baroreflex sensistivity in healthy men. J Physiol 2000; 529: 263–71

    PubMed  CAS  Google Scholar 

  210. Goldsmith RL, Bloomfield DM, Rosenwinkel ET. Exercise and autonomic function. Coron Artery Dis 2000; 11(2): 129–35

    PubMed  CAS  Google Scholar 

  211. Hedelin R, Bjerle P, Henriksson-Larsen K. Heart rate variability in athletes: relationship with central and peripheral performance. Med Sci Sports Exerc 2001; 33(8): 1394–8

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the athletes and individuals who participated in some of the research projects from our laboratory. We thank Bart Verheyden for his suggestions and for carefully reading the manuscript. Frank Beckers is supported by an ESA-Prodex post-doctoral contract. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André E. Aubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubert, A.E., Seps, B. & Beckers, F. Heart Rate Variability in Athletes. Sports Med 33, 889–919 (2003). https://doi.org/10.2165/00007256-200333120-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200333120-00003

Keywords

Navigation