Skip to main content
Log in

Effect of Endurance Exercise on Autonomic Control of Heart Rate

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Long-term endurance training significantly influences how the autonomic nervous system controls heart function. Endurance training increases parasympathetic activity and decreases sympathetic activity in the human heart at rest. These two training-induced autonomic effects, coupled with a possible reduction in intrinsic heart rate, decrease resting heart rate. Long-term endurance training also decreases submaximal exercise heart rate by reducing sympathetic activity to the heart. Physiological ageing is associated with a reduction in parasympathetic control of the heart; this decline in parasympathetic activity can be reduced by regular endurance exercise. Some research has indicated that females have increased parasympathetic and decreased sympathetic control of heart rate. These gender-specific autonomic differences probably contribute to a decreased cardiovascular risk and increased longevity observed in females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amano M, Kanda T, Ue H, et al. Exercise training and autonomic nervous system activity in obese individuals. Med Sci Sports Exerc 2001; 33: 1287–91

    Article  PubMed  CAS  Google Scholar 

  2. Dixon EM, Kamath MV, McCartney N, et al. Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovasc Res 1992; 26: 713–9

    Article  PubMed  CAS  Google Scholar 

  3. Goldsmith RL, Bloomfeld DM, Rosenwinkel ET. Exercise and autonomic function. Coronary Artery Dis 2000; 11: 129–35

    Article  CAS  Google Scholar 

  4. Gregoire J, Tuck S, Yamamoto Y, et al. Heart rate variability at rest and exercise: influence of age, gender and physical training. Can J Appl Physiol 1996; 21 (6): 455–70

    Article  PubMed  CAS  Google Scholar 

  5. Shi X, Stevens G, Foresman B, et al. Autonomic nervous system control of the heart: endurance exercise training. Med Sci Sports Exerc 1995; 27 (10): 1406–13

    PubMed  CAS  Google Scholar 

  6. Shin K, Minamitani H, Onishi S, et al. The power spectral analysis of heart rate variability in athletes during dynamic exercise: part 1. Clin Cardiol 1995; 18: 583–6

    Article  PubMed  CAS  Google Scholar 

  7. Smith ML, Hudson D, Graitzer H, et al. Exercise training bradycardia: the role of autonomic balance. Med Sci Sports Exerc 1989; 21 (1): 40–4

    Article  PubMed  CAS  Google Scholar 

  8. Yamamoto K, Miyachi M, Saitoh T, et al. Effects of endurance training on resting and post-exercise cardiac autonomic control. Med Sci Sports Exerc 2001; 33: 1496–502

    Article  PubMed  CAS  Google Scholar 

  9. Areskog N. Effects and adverse effects of autonomic blockade in physical exercise. Am J Cardiol 1985; 55: 132–134D

    Article  Google Scholar 

  10. Chen C, DiCarlo SE. Endurance exercise training-induces resting bradycardia: a brief review. Sports Med Training Rehab 1997; 8 (1): 37–77

    Article  Google Scholar 

  11. Wilmore JH, Stanforth P, Gagnon J, et al. Endurance exercise training has a minimal effect on resting heart rate: the HERITAGE study. Med Sci Sports Exerc 1996; 28 (7): 829–35

    Article  PubMed  CAS  Google Scholar 

  12. Brenner IK, Thomas S, Shephard RJ. Spectral analysis of heart rate variability during heat exposure and repeated exercise. Eur J Appl Physiol 1997; 76: 145–56

    Article  CAS  Google Scholar 

  13. Lucini D, Trabucchi V, Malliani A, et al. Analysis of initial autonomic adjustments to moderate exercise in humans. J Hypertens 1995; 13: 1660–3

    Article  PubMed  CAS  Google Scholar 

  14. Nakamura Y, Yamamoto Y, Muraoka I. Autonomic control of heart rate during physical exercise and fractal dimension of heart rate variability. J Appl Physiol 1993; 74 (2): 875–81

    PubMed  CAS  Google Scholar 

  15. Robinson BF, Epstein SE, Beiser GD, et al. Control of heart rate by the autonomic nervous system. Circ Res 1966; 19: 400–11

    Article  PubMed  CAS  Google Scholar 

  16. Breuer HM, Skyschally A, Schulz R, et al. Heart rate variability and circulating catecholamine concentrations during steady state exercise in healthy volunteers. Br Heart J 1993; 70: 144–9

    Article  PubMed  CAS  Google Scholar 

  17. Clausen JP. Effect of physical training on cardiovascular adjustments to exercise in man. Physiol Rev 1977; 57 (4): 779–813

    PubMed  CAS  Google Scholar 

  18. Norton KH, Boushel R, Strange S, et al. Resetting of the carotid arterial baroreflex during dynamic exercise in humans. J Appl Physiol 1999; 87 (1): 332–8

    PubMed  CAS  Google Scholar 

  19. Sleight P, Casadei B. Relationships between heart rate, respiration and blood pressure variabilities. In: Malik M, Camm AJ, editors. Heart rate variability. Armonk (NY): Futura Publishing Company, Inc., 1995: 311–27

    Google Scholar 

  20. Smith SA, Querry RG, Fadel PJ, et al. Differential baroreflex control of heart rate in sedentary and aerobically fit individuals. Med Sci Sports Exerc 2000; 32: 1419–30

    Article  PubMed  CAS  Google Scholar 

  21. Arai Y, Saul JP, Albrecht P, et al. Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol (Heart Circ Physiol) 1989; 213: H1322–41

    Google Scholar 

  22. Yamamoto Y, Hughson RL. Coarse-graining spectral analysis: new method for studying heart rate variability. J Appl Physiol 1991; 71 (3): 1143–50

    PubMed  CAS  Google Scholar 

  23. Polanczyk CA, Rohde LE, Moraes RS, et al. Sympathetic nervous system representation in time and frequency domain indices of heart rate variability. Eur J Appl Physiol 1998; 79: 69–73

    Article  CAS  Google Scholar 

  24. Challapalli S, Kadish AH, Horvath G, et al. Differential effects of parasympathetic blockade and parasympathetic withdrawal on heart rate variability. J Cardiovasc Electrophysiol 1999; 10: 1192–9

    Article  PubMed  CAS  Google Scholar 

  25. Ekblom B, Kilbom A, Soltysiak J. Physical training, bradycardia and autonomic nervous system. Scan J Clin Lab Invest 1973; 32: 251–6

    Article  CAS  Google Scholar 

  26. Maciel B, Gallo L, Neto J, et al. Parasympathetic contribution to bradycardia induced by endurance training in man. Cardiovasc Res 1985; 19: 642–8

    Article  PubMed  CAS  Google Scholar 

  27. Katona PG, McLean M, Dighton D, et al. Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J Appl Physiol 1982; 52 (6): 1652–7

    PubMed  CAS  Google Scholar 

  28. Shin K, Minamitani H, Onishi S, et al. Autonomic differences between athletes and nonathletes: spectral analysis approach. Med Sci Sports Exerc 1997; 29 (11): 1482–90

    Article  PubMed  CAS  Google Scholar 

  29. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc 2001; 33: S446–51

    Article  Google Scholar 

  30. Blomqvist CG, Saltin S. Cardiovascular adaptations to physical training. Ann Rev Physiol 1983; 45: 169–89

    Article  CAS  Google Scholar 

  31. Crawford MH. Physiologic consequences of systemic training. Cardiol Clin 1992; 10 (2): 209–18

    PubMed  CAS  Google Scholar 

  32. Evans JM, Ziegler M, Patwardhan AR, et al. Gender differences in autonomic cardiovascular regulation: spectral, hormonal, and hemodynamic indexes. J Appl Physiol 2001; 91: 2611–8

    PubMed  CAS  Google Scholar 

  33. Meredith C, Frontera W, Fisher E, et al. Peripheral effects of endurance training in young and old subjects. J Appl Physiol 1989; 66: 2844–9

    PubMed  CAS  Google Scholar 

  34. Tanaka H, Dinenno FA, Monahan KD, et al. Aging, habitual exercise, and dynamic arterial compliance. Circulation 2000; 102: 1270–5

    Article  PubMed  CAS  Google Scholar 

  35. Vaitkevicius PV, Fleg JL, Engel JH, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 1993; 88: 1456–62

    Article  PubMed  CAS  Google Scholar 

  36. Banhegyi A, Pavlik G, Olexo Z. The effect of detraining on echocardiographic parameters due to injury. Acta Physiol Hung 1999; 86 (3–4): 223–7

    PubMed  CAS  Google Scholar 

  37. Hughson RL, Yamamoto Y, Blaber AP, et al. Effect of 28- day head down bed rest with counter measures on heart rate variability during LBNP. Aviat Space Environ Med 1994; 65: 293–300

    PubMed  CAS  Google Scholar 

  38. Lipsitz LA, Mietus J, Moody GB, et al. Spectral characteristics of heart rate variability before and during postural tilt: relations to aging and risk of syncope. Circulation 1990; 81: 1803–10

    Article  PubMed  CAS  Google Scholar 

  39. Goldsmith RL, Bigger JT, Bloomfeld DM, et al. Physical fitness as a determinant of vagal modulation. Med Sci Sports Exerc 1997; 29 (6): 812–7

    Article  PubMed  CAS  Google Scholar 

  40. Cerutti S, Bianchi AM, Mainardi LT. Spectral analysis of the heart rate variability signal. In: Malik M, Camm AJ, editors. Heart rate variability. Armonk (NY): Futura Publishing Company, Inc., 1995: 63–74

    Google Scholar 

  41. Lipsitz LA, Goldberger AL. Loss of ’complexity’ and aging. JAMA 1992; 267: 1806–9

    Article  PubMed  CAS  Google Scholar 

  42. Task Force of the European Society of Cardiology, North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 1996; 93: 1043–65

    Article  Google Scholar 

  43. Brenner IK, Thomas S, Shephard RJ. Autonomic regulation of circulation during exercise and heat exposure: inferences from heart rate variability. Sports Med 1998; 26: 85–99

    Article  PubMed  CAS  Google Scholar 

  44. Eckberg DL. Sympathovagal balance: a critical appraisal. Circulation 1997; 96: 3224–32

    Article  PubMed  CAS  Google Scholar 

  45. Kleiger RE, Bigger JT, Bosner MS, et al. Stability over time measuring heart rate variability in normal subjects. Am J Cardiol 1991; 68: 626–30

    Article  PubMed  CAS  Google Scholar 

  46. Malik M. Heart rate variability. Curr Opin Cardiol 1998; 13: 36–44

    Article  PubMed  CAS  Google Scholar 

  47. Saul JP. Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. News Physiol Sci 1990; 5: 32–7

    Google Scholar 

  48. Sinnreich R, Kark JD, Friedlander Y, et al. Five minute recordings of heart rate variability for population studies: repeatability and age-sex characteristics. Heart 1998; 80: 156–62

    PubMed  CAS  Google Scholar 

  49. Blaber AP, Bondar RL, Freeman R. Coarse graining spectral analysis of HR and BP variability in patientswith autonomic failure. Am J Physiol (Heart Circ Physiol) 1996; 271: H1555–64

    Google Scholar 

  50. Butler GC, Yamamoto Y, Hughson R. Fractal nature of short term systolic blood pressure and heart rate variability during lower body negative pressure. Am J Physiol 1994; 267: R26–33

    Google Scholar 

  51. Huikuri HV, Makikallio TH, Peng CK, et al. Fractal properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after acute myocardial infarction. Circulation 2000; 101: 47–53

    Article  PubMed  CAS  Google Scholar 

  52. Iyengar N, Peng CK, Morin RJ, et al. Age-related alterations in the fractal scaling of cardiac interbeat dynamics. Am J Physiol 1996; 271: R1078–84

    Google Scholar 

  53. Makikallio TH, Hoiber S, Kober L, et al. Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depresses left ventricular function after acute myocardial infarction. Am J Cardiol 1999; 83: 836–9

    Article  PubMed  CAS  Google Scholar 

  54. Pikkujamsa SM, Makikallio TH, Sourander LB, et al. Cardiac interbeat interval dynamics from childhood to senescence: comparison of conventional and new measures based on fractals and chaos theory. Circulation 1999; 100: 393–9

    Article  PubMed  CAS  Google Scholar 

  55. Peng CK, Mietus J, Hausdorff JM, et al. Long-range anticorrelations and non-gaussian behaviour of the heart beat. Physical Rev Lett 1993; 70: 1343–6

    Article  Google Scholar 

  56. Yamamoto Y, Hughson R. Extracting fractal components from time series. Physica D 1993; 68: 250–64

    Article  Google Scholar 

  57. Yamamoto Y, Hughson RL, Peterson JC. Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol 1991; 71: 1136–42

    PubMed  CAS  Google Scholar 

  58. Berger R, Saul JP, Cohen RJ. Transfer function analysis of autonomic regulation I: canine atrial rate response. Am J Physiol (Heart Circ Physiol) 1989; 256: H142–52

    Google Scholar 

  59. Sayers BM. Analysis of heart rate variability. Ergonomics 1973; 16: 17–32

    Article  PubMed  CAS  Google Scholar 

  60. Singh JP, Larson MG, O’Donnell CJ, et al. Heritability of heart rate variability: the Framingham study. Circulation 1999; 99: 2251–4

    Article  PubMed  CAS  Google Scholar 

  61. Kreutz R, Struk B, Stock P, et al. Evidence for primary genetic determination of heart rate regulation. Circulation 1997; 96: 1078–81

    Article  PubMed  CAS  Google Scholar 

  62. Chess GF, Tam MK, Calaresu FR. Influence of cardiac neural inputs on rhythmic variations of heart period in cats. Am J Physiol 1975; 228: 775–80

    PubMed  CAS  Google Scholar 

  63. Akselrod S, Gordon D, Madwed JB, et al. Hemodynamic regulation: investigation by spectral analysis. Am J Physiol 1985; 249: H867–75

    Google Scholar 

  64. Bootsma M, Swenne CA, Van Bolhuis HH, et al. Heart rate variability as indexes of sympathovagal balance. Am J Physiol (Heart Circ Physiol) 1996; 266: H1565–71

    Google Scholar 

  65. Malik M, Camm AJ. Components of heart rate variability: what they really mean and what we really measure. Am J Cardiol 1993; 72: 821–2

    Article  PubMed  CAS  Google Scholar 

  66. Malliani A, Lombardi F, Pagani M, et al. The neural regulation of circulation explored in the frequency domain. J Autonom Nerv Sys 1990; 30: S103–8

    Article  Google Scholar 

  67. Malliani A, Pagani M, Lombardi F, et al. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991; 84: 482–92

    Article  PubMed  CAS  Google Scholar 

  68. Pagani M, Lombardi F, Gussetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interactions in man and conscious dog. Circ Res 1986; 59: 178–93

    Article  PubMed  CAS  Google Scholar 

  69. Pomeranz B, Macaulay JB, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol (Heart Circ Physiol) 1985; 266: H151–3

    Google Scholar 

  70. Thomaseth K, Cobelli C, Bellavere F, et al. Heart rate spectral analysis for assessing autonomic regulation in diabetic patients. J Autonom Nerv Sys 1990; 30: S169–72

    Article  Google Scholar 

  71. Saul JP, Albrecht P, Berger R, et al. Analysis of long heart rate variability: methods of 1/f scaling and implications. Comp Cardiol 1988; 14: 419–22

    CAS  Google Scholar 

  72. Peng CK, Havlin S, Stanley HE, et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995; 5: 82–6

    Article  PubMed  CAS  Google Scholar 

  73. Pichot V, Gaspoz JM, Molliex S, et al. Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. J Appl Physiol 1999; 86: 1081–91

    PubMed  CAS  Google Scholar 

  74. Yeragani VK, Sobolewski E, Jampala VC, et al. Fractal dimension and approximate entropy of heart period and heart rate: awake versus sleep differences and methodological issues. Clin Sci 1998; 95: 295–301

    Article  PubMed  CAS  Google Scholar 

  75. Goldberger JJ. Sympathovagal balance: how should we measure it? Am J Physiol (Heart Circ Physiol) 1999; 276: H1273–80

    Google Scholar 

  76. Hojgaard MV, Holstein-Rathlou NH, Agner E, et al. Dynamics of spectral components of heart rate variability during changes in autonomic balance. Am J Physiol (Heart Circ Physiol) 1998; 275: H213–9

    Google Scholar 

  77. Houle MS, Billman GE. Low-frequency component of the heart rate variability spectrum: a poor marker of sympathetic activity. Am J Physiol (Heart Circ Physiol) 1999; 276: H215–23

    Google Scholar 

  78. Katz A, Liberty IF, Porath A, et al. A simple bedside test of 1-minute heart rate variability during deep breathing as a prognostic index after myocardial infarction. Am Heart J 1999; 138: 32–8

    Article  PubMed  CAS  Google Scholar 

  79. Nolan J, Batin PD, Andrews R, et al. Prospective study of heart rate variability and mortality in chronic heart failure. Circulation 1998; 98: 1510–6

    Article  PubMed  CAS  Google Scholar 

  80. Keteyian SJ, Brawner CA, Schairer JR, et al. Effects of exercise training on chronotropic incompetence in patients with heart failure. Am Heart J 1999; 138: 233–40

    Article  PubMed  CAS  Google Scholar 

  81. Davy KP, Miniclier NL, Taylor JA, et al. Elevated heart rate variability in physically active postmenopausal women: a cardioprotective effect. Am J Physiol (Heart Circ Physiol) 1996; 271: H455–60

    Google Scholar 

  82. Furlan R, Piazza S, Dell’Orto S, et al. Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovasc Res 1993; 27: 482–8

    Article  PubMed  CAS  Google Scholar 

  83. Reiling MJ, Seals DR. Resiratory sinus arrhythmia and carotid baroreflex control of heart rate in endurance athletes and untrained controls. Clin Phys 1988; 8: 511–9

    Article  CAS  Google Scholar 

  84. Butler GC, Yamamoto Y, Hughson R. Heart rate variability to monitor autonomic nervous system activity during orthostatic stress. J Clin Pharmacol 1994; 34: 558–62

    PubMed  CAS  Google Scholar 

  85. Casadei B, Cochrane S, Johnston J, et al. Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiol Scand 1995; 153: 125–31

    Article  PubMed  CAS  Google Scholar 

  86. Kamath MV, Fallen EL, McKelvie R. Effects of steady state exercise on the power spectrum of heart rate variability. Med Sci Sports Exerc 1991; 23 (4): 428–34

    PubMed  CAS  Google Scholar 

  87. Pagani M, Somers V, Furlan R, et al. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension 1988; 12: 600–10

    Article  PubMed  CAS  Google Scholar 

  88. Perini R, Orizio C, Baselli G, et al. The influence of exercise intensity on the power spectrum of heart rate variability. Eur J Appl Physiol 1990; 61: 143–8

    Article  CAS  Google Scholar 

  89. Yamamoto Y, Hughson R, Nakamura Y. Autonomic nervous system responses to exercise in relation to ventilatory threshold. Chest 1992; 101 (5): 206S-10S

    Article  Google Scholar 

  90. Gerstenblith G, Lakatta EG, Weisfeldt ML. Age changes in myocardial function and exercise response. Prog Card Dis 1976; 19: 1–21

    Article  CAS  Google Scholar 

  91. Ogawa T, Spina RJ, Martin WH, et al. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation 1992; 86: 494–503

    Article  PubMed  CAS  Google Scholar 

  92. Spina RJ. Cardiovascular adaptations to endurance exercise training in older men and women. Ex Sport Sci Rev 1999; 27: 317–32

    CAS  Google Scholar 

  93. Stratton JR, Levy WC, Cerqueira MD, et al. Cardiovascular responses to exercise: effects of aging and exercise training in healthy men. Circulation 1994; 89: 1648–55

    Article  PubMed  CAS  Google Scholar 

  94. Fagard R, Thijs L, Amery A. Age and hemodynamic response to posture and to exercise. Am J Geriatr Cardiol 1993; 2: 23–40

    PubMed  Google Scholar 

  95. Hossack KF, Bruce RA. Maximal cardiac function in sedentary normal men and women: comparison of age-related changes. J Appl Physiol 1982; 53: 799–804

    PubMed  CAS  Google Scholar 

  96. Rodeheffer RJ, Gerstenblith G, Becker LC, et al. Exercise cardiac output is maintained with advancing age in healthy human subjects: cardiac dilation and increasing stroke volume compensate for a diminished heart rate. Circulation 1984; 69: 203–13

    Article  PubMed  CAS  Google Scholar 

  97. Hagberg JM, Allen WK, Seals DR, et al. A hemodynamic comparison of young and older endurance athletes during exercise. J Appl Physiol 1985; 53: 2041–6

    Google Scholar 

  98. Heath GW, Hagberg JM, Ehsani AA, et al. A physiological comparison of young and older endurance athletes. J Appl Physiol 1981; 51: 634–40

    PubMed  CAS  Google Scholar 

  99. Korkushko OV, Shatilo VB, Plachinda YI, et al. Autonomic control of cardiac chronotropic function in man as a function of age: assessment by power spectral analysis of heart rate variability. J Autonom Nerv Sys 1991; 32: 191–8

    Article  CAS  Google Scholar 

  100. O’Brien IA, O’Hare P, Corrall RJ. Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function. Br Heart J 1986; 55: 348–54

    Article  PubMed  Google Scholar 

  101. Odemuyiwa O. Effect of age on heart rate variability. In: Malik M, Camm AJ, editors. Heart rate variability. Armonk (NY): Futura Publishing Company, Inc., 1995: 235–9

    Google Scholar 

  102. DeMeersman RE. Heart rate variability and aerobic fitness. Am Heart J 1993; 125 (3): 726–31

    Article  CAS  Google Scholar 

  103. Ryan SM, Goldberger AL, Pincus SM, et al. Gender- and agerelated differences in heart rate dynamics: are women more complex than men? J Am Coll Cardiol 1994; 24 (7): 1700–7

    Article  PubMed  CAS  Google Scholar 

  104. Tulppo MP, Makikallio TH, Seppanen T, et al. Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol (Heart Circ Physiol) 1998; 274 (43): H424–9

    Google Scholar 

  105. Ingram DK. Age-related decline in physical activity: generalization to nonhumans. Med Sci Sports Exerc 2000; 32 (9): 1623–9

    PubMed  CAS  Google Scholar 

  106. Schuit AJ, Van Amelsvoort LG, Verheij TC, et al. Exercise training and heart rate variability in older people. Med Sci Sports Exerc 1999; 31 (6): 816–21

    Article  PubMed  CAS  Google Scholar 

  107. Stein PK, Ehsani AA, Domitrovich PP, et al. Effect of exercise training on heart rate variability in healthy older adults. Am Heart J 1999; 138: 567–76

    Article  PubMed  CAS  Google Scholar 

  108. Kaplan DT, Furman MI, Pincus SM, et al. Aging and complexity of cardiovascular dynamics. Biophys J 1991; 59: 945–9

    Article  PubMed  CAS  Google Scholar 

  109. Seals D, Taylor JA, Ng AV, et al. Exercise and aging: autonomic control of the circulation. Med Sci Sports Exerc 1994; 26 (5): 568–76

    PubMed  CAS  Google Scholar 

  110. Parati G, Saul JP, DiRienzo M, et al. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation: a critical appraisal. Hypertension 1995; 25: 1276–86

    Article  PubMed  CAS  Google Scholar 

  111. Davy KP, Desouza CA, Jones PP, et al. Elevated heart rate variability in physically active young and older adult women. Clin Sci 1998; 94: 579–84

    PubMed  CAS  Google Scholar 

  112. Seals DR, Hagberg JM, Spina RJ, et al. Enhanced left ventricular performance in endurance trained older men. Circulation 1994; 89: 198–205

    Article  PubMed  CAS  Google Scholar 

  113. Rowell LB. Central circulatory adjustments to dynamic exercise. In: Rowell LB, editor. Human cardiovascular control. New York: Oxford University Press, 1993: 162–203

    Google Scholar 

  114. Kohrt WM, Malley MT, Coggan AR, et al. Effects of gender, age, and fitness level on response of VO2max to training in 60–71 yr olds. J Appl Physiol 1991; 71: 2004–11

    PubMed  CAS  Google Scholar 

  115. Raven PB, Drinkwater BL, Horvath SM. Cardiovascular responses of young female track athletes during exercise. Med Sci Sports 1972; 4: 205–9

    PubMed  CAS  Google Scholar 

  116. Saltin B, Astrand PO. Maximal oxygen uptake in athletes. J Appl Physiol 1967; 23: 353–8

    PubMed  CAS  Google Scholar 

  117. Tanaka H, Seals D. Age and gender interactions in physiological functional capacity: insight from swimming performance. J Appl Physiol 1997; 82: 846–51

    PubMed  CAS  Google Scholar 

  118. Wiebe CG, Gledhill N, Jamnik VK, et al. Exercise cardiac function in young through elderly endurance trained women. Med Sci Sports Exerc 1999; 31: 684–91

    Article  PubMed  CAS  Google Scholar 

  119. Mitchell JE, Tate C, Raven P, et al. Acute response and chronic adaptation to exercise in women. Med Sci Sports Exerc 1992; 24: S258–65

    Google Scholar 

  120. Barnett SR, Morin RJ, Kiely DK, et al. Effect of age and gender on autonomic control of blood pressure dynamics. Hypertension 1999; 33: 1195–200

    Article  PubMed  CAS  Google Scholar 

  121. Huikuri HV, Pikkujamsa SM, Airaksinen J, et al. Sex-related differences in autonomic modulation of heart rate in middle aged subjects. Circulation 1996; 94: 122–5

    Article  PubMed  CAS  Google Scholar 

  122. Kuo TB, Lin T, Yang CC, et al. Effect of aging on gender differences in neural control of heart rate. Am J Physiol (Heart Circ Physiol) 1999; 277 (46): H2233–9

    Google Scholar 

  123. Laitinen T, Hartikainen J, Vanninen E, et al. Age and gender dependency of baroreflex sensitivity in healthy subjects. J Appl Physiol 1998; 84 (2): 576–83

    PubMed  CAS  Google Scholar 

  124. Singer DH, Ori Z. Changes in heart rate variability associated with sudden cardiac death. In: Malik M, Camm AJ, editors. Heart rate variability. Armonk (NY): Futura Publishing Company, Inc., 1995: 429–48

    Google Scholar 

  125. Bigger JT, Fleiss JL, Steinman RC, et al. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 1992; 85 (1): 164–71

    Article  PubMed  Google Scholar 

  126. Shusterman V, Aysin B, Weiss R, et al. Dynamics of low-frequency R-R interval oscillations preceding spontaneous ventricular tachycardia. Am Heart J 2000; 139 (1): 126–33

    Article  PubMed  CAS  Google Scholar 

  127. Tsuji H, Larson MG, Venditti FJ, et al. Impact of reduced heart rate variability on risk for cardiac events. Circulation 1996; 94: 2850–5

    Article  PubMed  CAS  Google Scholar 

  128. van de Borne P, Montano N, Pagani M, et al. Absence of low frequency variability of sympathetic nerve activity in severe heart failure. Circulation 1994; 95: 1449–54

    Article  Google Scholar 

  129. Adamopoulos S, Ponikowski P, Cerquetani E, et al. Circadian pattern of heart rate variability in chronic heart failure patients: effects of physical training. Eur Heart J 1995; 16: 1380–6

    PubMed  CAS  Google Scholar 

  130. Kohl HW. Physical activity and cardiovascular disease evidence for a dose response. Med Sci Sports Exerc 2001; 33: S472–83

    Article  Google Scholar 

  131. Williams PT. Physical fitness and activity as separate heart disease risk factors: a meta-analysis. Med Sci Sports Exerc 2001; 33: 754–61

    PubMed  CAS  Google Scholar 

  132. Malfatto G, Facchini M, Bragato R, et al. Short and long term effects of exercise training on the tonic autonomic modulation of heart rate variability after myocardial infarction. Eur Heart J 1996; 17: 532–8

    Article  PubMed  CAS  Google Scholar 

  133. Pagani M, Lucini D, Rimoldi O, et al. Effects of physical and mental exercise on heart rate variability. In: Malik M, Camm AJ, editors. Heart rate variability. Armonk (NY): Futura Publishing Company, Inc., 1995: 245–66

    Google Scholar 

Download references

Acknowledgments

The authors have provided no information on conflicts of interest directly relevant to the content of this review. This research was supported by the Heart and Stroke Foundation of British Columbia and the Yukon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Carter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, J.B., Banister, E.W. & Blaber, A.P. Effect of Endurance Exercise on Autonomic Control of Heart Rate. Sports Med 33, 33–46 (2003). https://doi.org/10.2165/00007256-200333010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200333010-00003

Keywords

Navigation