Skip to main content
Log in

Biochemical Aspects of Overtraining in Endurance Sports

A Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Top-level performances in endurance sports require several years of hard training loads. A major objective of this endurance training is to reach the most elevated metabolic adaptations the athlete will be able to support. As a consequence, overtraining is a recurrent problem that highly-trained athletes may experience during their career. Many studies have revealed that overtraining could be highlighted by various biochemical markers but a principal discrepancy in the diagnosis of overtraining stems from the fact that none of these markers may be considered as universal. In endurance sports, the metabolic aspects of training fatigue appear to be the most relevant parameters that may characterise overtraining when recovery is not sufficient, or when dietary habits do not allow an optimal replenishment of substrate stores. From the skeletal muscle functions to the overall energetic substrate availability during exercise, six metabolic schemes have been studied in relation to overtraining, each one related to a central parameter, i.e. carbohydrates, branched-chain amino acids, glutamine, polyunsaturated fatty acids, leptin, and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

Similar content being viewed by others

References

  1. Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev 1994; 74: 49–94

    Article  PubMed  CAS  Google Scholar 

  2. Fry R, Grove J, Morton A, et al. Psychological and immunological correlates of acute overtraining. Br J Sports Med 1994; 28: 241–6

    Article  PubMed  CAS  Google Scholar 

  3. Nieman DC. Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc 1994; 26: 128–39

    Article  PubMed  CAS  Google Scholar 

  4. Mackinnon L. Immunity in athletes. Int J Sports Med 1997; 18 Suppl. 1: S62–8

    Article  Google Scholar 

  5. Fry RW, Morton AR, Keast D. Overtraining in athletes: un update. Sports Med 1991; 12: 32–65

    Article  PubMed  CAS  Google Scholar 

  6. Budgett R. The overtraining syndrome. BMJ 1994; 309: 465–8

    Article  PubMed  CAS  Google Scholar 

  7. Morgan WP, Brown DR, Raglin JS, et al. Psychological monitoring of overtraining and staleness. Br J Sport Med 1987; 21: 107–12

    Article  CAS  Google Scholar 

  8. Petibois C, Cazorla G, Deleris G. FT-IR spectroscopy utilization to athletes fatigability evaluation and control. Med Sci Sports Exerc 2000; 32: 1803–8

    Article  PubMed  CAS  Google Scholar 

  9. Fry A, Kraemer W, Van-Borselen F, et al. Performance decrements with high-intensity resistance exercise overtraining. Med Sci Sports Exerc 1994; 26: 1165–73

    PubMed  CAS  Google Scholar 

  10. Green HJ, Helyar R, Ball-Burnett M, et al. Metabolic adaptations to training precede changes in muscle mitochondrial capacity. J Appl Physiol 1992; 72: 484–91

    PubMed  CAS  Google Scholar 

  11. Leitzmann L, Jung K, Seiler D. Effect of an extreme physical endurance performance on selected plasma protéins. Int J Sports Med 1991; 12: 100–5

    Google Scholar 

  12. Kargotich S, Goodman C, Keast D, et al. The influence of exercise- induced plasma volume changes on the interpretation of biochemical parameters used for monitoring exercise, training and sport. Sports Med 1998; 26 (2): 101–17

    Article  PubMed  CAS  Google Scholar 

  13. Snyder AC. Overtraining and glycogen depletion hypothesis. Med Sci Sports Exerc 1998; 30: 1146–50

    Article  PubMed  CAS  Google Scholar 

  14. Gastmann UA, Lehmann MJ. Overtraining and the BCAA hypothesis. Med Sci Sports Exerc 1998; 30 (7): 1173–8

    Article  PubMed  CAS  Google Scholar 

  15. Rowbottom DG, Keast D, Morton AR. The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med 1996; 21: 80–97

    Article  PubMed  CAS  Google Scholar 

  16. Calder PC, Newsholme EA. Polyunsatturated fatty acids suppress human peripheral blood lymphocyte proliferation and interleukin-2 production. Clin Sci 1992; 82: 695–701

    PubMed  CAS  Google Scholar 

  17. Lehmann M, Gastmann U, Lormes W, et al. Influence of intensified training on neuroendocrine axes regulation: possible impact of tissue markers like leptin, inhibin B, vitamin D. 3rd Colloque Biologie de l’exercice musculaire; 2001 May 18; Ferrand, 51

  18. Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev 1994; 52: 253–65

    Article  PubMed  CAS  Google Scholar 

  19. Viguie CA, Frei B, Shigenaga MK, et al. Antioxidant status and indexes of oxidative stress during consecutive days of exercise. J Appl Physiol 1993; 75: 566–72

    PubMed  CAS  Google Scholar 

  20. Child RB, Wilkinson DM, Fallowfield JL, et al. Elevated serum antioxidant capacity and plasma malondialdehyde concentration in response to a simulated half-marathon run. Med Sci Sports Exerc 1998; 30: 1603–7

    Article  PubMed  CAS  Google Scholar 

  21. Alessio HM, Goldfarb AH. Lipid peroxidation and scavenger enzymes during exercise: adaptative response to training. J Appl Physiol 1988; 64: 1333–6

    PubMed  CAS  Google Scholar 

  22. Jewett SL, Eddy LJ, Hochstein P. Is the auto-oxidation of catecholamines involved in ischemia-reperfusion injury. Free Radic Biol Med 1989; 6: 185–8

    Article  PubMed  CAS  Google Scholar 

  23. McKenzie DC. Markers of excessive exercise. Can J Appl Physiol 1999; 24: 66–73

    Article  PubMed  CAS  Google Scholar 

  24. Saxton JM, Donnelly AE, Roper HP. Indices of free-radical mediated damage following maximum voluntary eccentric and concentric muscular work. Eur J Appl Physiol Occup Physiol 1994; 68: 189–93

    Article  PubMed  CAS  Google Scholar 

  25. Viru A. Mobilisation of structural proteins during exercise. Sports Med 1987; 4: 95–108

    Article  PubMed  CAS  Google Scholar 

  26. Hartmann U, Mester J. Training and overtraining markers in selected sport events. Med Sci Sports Exerc 2000; 32: 209–15

    PubMed  CAS  Google Scholar 

  27. Jakeman P, Winter E, Doust J. A review of research in sports physiology. J Sports Sci 1994; 12: 33–60

    Article  PubMed  CAS  Google Scholar 

  28. Hooper S, Mackinnon L. Monitoring overtraining in athletes. Sports Med 1995; 20: 321–7

    Article  PubMed  CAS  Google Scholar 

  29. Flynn MG, Pizza FX, Boone JB. Indices of training stress during competitive running and swimming seasons. Int J Sports Med 1994; 15: 21–7

    Article  PubMed  CAS  Google Scholar 

  30. Hooper SL, Mackinnon LT, Howard A, et al. Markers for monitoring overtraining and recovery. Med Sci Sports Exerc 1995; 27: 106–12

    PubMed  CAS  Google Scholar 

  31. Sorichter S, Mair J, Koller A, et al. Skeletal troponin I as a marker of exercise-induced muscle damage. J Appl Physiol 1997; 83: 1076–82

    PubMed  CAS  Google Scholar 

  32. Tiidus PM. Radical species in inflammation and overtraining. Can J Physiol Pharmacol 1998; 76: 533–8

    Article  PubMed  CAS  Google Scholar 

  33. Atalay M, Seene T, Hänninen O, et al. Skeletal muscle and heart antioxidant defenses in response to sprint training. Acta Physiol Scand 1996; 158: 129–34

    Article  PubMed  CAS  Google Scholar 

  34. Rowbottom DG, Keast D, Green S, et al. The case history of an elite ultra-endurance cyclist who developed chronic fatigue syndrome. Med Sci Sport Exerc 1998; 30: 1345–8

    CAS  Google Scholar 

  35. Costill DL, Flynn MG, Kirwan JP, et al. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 1988; 20: 249–54

    Article  PubMed  CAS  Google Scholar 

  36. Costill DL, Bowers R, Branam G, et al. Muscle glycogen utilization during prolonged exercise on successive days. J Appl Physiol 1971; 31: 834–8

    PubMed  CAS  Google Scholar 

  37. Bosquet L, Leger L, Legros P. Blood lactate response to overtraining in male endurance athletes. Eur J Appl Physiol 2001; 84: 107–14

    Article  PubMed  CAS  Google Scholar 

  38. Hedelin R, Kentta G, Wiklund U, et al. Short-term overtraining: effects on performance, circulatory responses, and heart rate variability. Med Sci Sports Exerc 2000; 32: 1480–4

    Article  PubMed  CAS  Google Scholar 

  39. Jeukendrup A, Hesselink M. Overtraining: what do lactate curves tell us. Br J Sports Med 1994; 28: 239–40

    Article  PubMed  CAS  Google Scholar 

  40. Snyder AC, Jeukendrup AE, Hesselink MKC, et al. A physiological/ psychological indicator of over-reaching during intensive training. Int J Sports Med 1993; 14: 29–32

    Article  PubMed  CAS  Google Scholar 

  41. Lehmann M, Foster C, Keul J. Overtraining in endurance athletes: a brief review. Med Sci Sports Exerc 1993; 25: 854–62

    Article  PubMed  CAS  Google Scholar 

  42. Wagenmakers AJM, Brookes JH, Coakley JH, et al. Exercise induced activation of the branched-chain 2-oxo acid dehydrogenase in human muscle. Eur J Appl Physiol Occup Physiol 1989; 59: 159–67

    Article  PubMed  CAS  Google Scholar 

  43. Blomstrand E, Cessing F, Newsholme EA. Changes in plasma concentrations of aromatic and branched-chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiol Scand 1989; 133: 115–21

    Article  Google Scholar 

  44. Varnier M, Sarto P, Martines D, et al. Effect of infusing branched-chain amino acid during incremental exercise with reduced muscle glycogen content. Eur J Appl Physiol Occup Physiol 1994; 69: 26–31

    Article  PubMed  CAS  Google Scholar 

  45. Tanaka H, West K, Duncan G, et al. Changes in plasma tryptophan branched-chain amino acid ratio in response to training volume variation. Int J Sports Med 1997; 18: 270–5

    Article  PubMed  CAS  Google Scholar 

  46. Lehmann M, Mann H, Gastmann U, et al. Unaccustomed high mile age vs intensity training-related changes in performance and serum amino acid levels. Int J SportsMed 1996; 17: 187–92

    Article  CAS  Google Scholar 

  47. Newsholme EA. Biochemical mechanisms to explain immunosuppression in well-trained and overtrained athletes. Int J Sports Med 1994; 15 Suppl. 3: S142–7

    Article  Google Scholar 

  48. Blomstrand E, Hassmen P, Ek S, et al. Influence of ingesting a solution of branched-chain amino acids on perceived exertion during exercise. Acta Physiol Scand 1997; 159: 41–9

    Article  PubMed  CAS  Google Scholar 

  49. Snyder A, Kuipers H, Cheng B, et al. Overtraining following intensified training with normal muscle glycogen. Med Sci Sports Exerc 1995; 27: 1063–70

    Article  PubMed  CAS  Google Scholar 

  50. Newsholme EA, Crabtree B, Ardawi MSM. Glutamine metabolism in lymphocytes, its biochemical, physiological and clinical importance. Q J Exp Physiol 1985; 70: 473–89

    PubMed  CAS  Google Scholar 

  51. Calder PC. Glutamine and the immune system. Clin Nutr 1994; 13: 2–8

    Article  PubMed  CAS  Google Scholar 

  52. Newsholme EA, Blomstrand E, Ekblom B. Physical and mental fatigue: metabolic mechanisms and importance of plasma amino acids. Br Med Bull 1992; 48: 477–95

    PubMed  CAS  Google Scholar 

  53. Mackinnon LT, Hooper SL, Jones S, et al. Hormonal, immunological, and hematological responses to intensified training in elite swimmers. Med Sci Sports Exerc 1997; 29: 1637–45

    Article  PubMed  CAS  Google Scholar 

  54. Parry-Billings M, Budgett R, Koutekadis Y, et al. Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Med Sci Sports Exerc 1992; 24: 1353–8

    PubMed  CAS  Google Scholar 

  55. Pyne DB, McDonald WA, Gleeson M, et al. Mucosal immunity, respiratory illness, and competitive performance in elite swimmers. Med Sci Sports Exerc 2000; 33: 348–5

    Google Scholar 

  56. Gabriel HH, Urhausen A, Valet G, et al. Overtraining and immune system: a prospective longitudinal study in endurance athletes. Med Sci Sports Exerc 1998; 30: 1151–7

    Article  PubMed  CAS  Google Scholar 

  57. Aissa-Benhaddad A, Bouix D, Khaled S, et al. Early hemorheologic aspects of overtraining in elite athletes. Clin Hemorheol Microcirc 1999; 20: 117–25

    PubMed  CAS  Google Scholar 

  58. Hickey MS, Considine RV, Israel RG, et al. Leptin is related to body fat content in male distance runners. Am J Physiol 1996; 271: E938–40

    Google Scholar 

  59. Essig DA, Alderson NL, Ferguson MA, et al. Delayed effects of exercise on the plasma leptin concentration. Metabolism 2000; 49: 395–9

    Article  PubMed  CAS  Google Scholar 

  60. Gippini A, Mato A, Peino R, et al. Effect of resistance exercise (body building) training on serum leptin levels in young men: implications for relationship between body mass index and serum leptin. J Endocrinol Invest 1999; 22: 824–8

    PubMed  CAS  Google Scholar 

  61. Noland RC, Baker JT, Boudreau SR, et al. Effect of intense training on plasma leptin in male and female swimmers. Med Sci Sports Exerc 2001; 33: 227–31

    PubMed  CAS  Google Scholar 

  62. Perusse L, Collier G, Gagnon J, et al. Acute and chronic effects of exercise on leptin levels in humans. J Appl Physiol 1997; 83: 5–10

    PubMed  CAS  Google Scholar 

  63. Cleare AJ, O’Keane V, Miell J. Plasma leptin in chronic fatigue syndrome and a placebo-controlled study of the effects of low-dose hydrocortisone on leptin secretion. Clin Endocrinol (Oxf) 2001; 55: 113–9

    Article  CAS  Google Scholar 

  64. Shephard RJ. Chronic fatigue syndrome: an update. Sports Med 2001; 31: 167–94

    Article  PubMed  CAS  Google Scholar 

  65. Rowbottom DG, Keast D, Goodman A, et al. The haematological, biochemical, and immunological profile of athletes suffering from the overtraining syndrome. Eur J Appl Physiol Occup Physiol 1995; 70: 502–9

    Article  PubMed  CAS  Google Scholar 

  66. Smith DJ, Roberts D. Effects of high volume and/or intense exercise on selected blood chemistry parameters. Clin Biochem 1994; 27: 435–40

    Article  PubMed  CAS  Google Scholar 

  67. Liesen H, Dufaux B, Hollman W. Modification of serum glycoproteins the days following a prolonged physical exercise and the influence of physical training. Eur J Appl Physiol Occup Physiol 1977; 37: 243–7

    Article  PubMed  CAS  Google Scholar 

  68. Roberts D, Smith DJ. Iron parameters with training at sea level and moderate altitude in elite male swimmers [abstract]. The Child in Sport and Physical Activity: Joint CASS/SCAPPS conference. 1992 Jun 25; Saskatoon; 56

  69. Smith JA. Exercise, training and red blood cell turnover. Sports Med 1995; 19: 9–31

    Article  PubMed  CAS  Google Scholar 

  70. Casoni I, Borsetto C, Cavicchi A. Reduced hemoglobin concentration and red cell hemoglobinization in Italian marathon and ultramarathon runners. Int J Sports Med 1985; 6: 176–81

    Article  PubMed  CAS  Google Scholar 

  71. Friman G, Illback NG. Acute infection: metabolic responses, effect on performance, interaction with exercise, and myocarditis. Int J Sports Med 1998; 19 Suppl. 3: 172–7

    Article  Google Scholar 

  72. Banfi G, Marinelli M, Roi GS, et al. Usefulness of free testosterone/cortisol ratio during a season of elite speed skating athletes. Int J Sports Med 1993; 14: 373–9

    Article  PubMed  CAS  Google Scholar 

  73. Jones GR, Newhouse I. Sport-related hematuria: a review. Clin J Sport Med 1997; 7: 199–225

    Article  Google Scholar 

  74. Petibois C, Cazorla G, Déléris G. Perspectives in the utilisation of fourier-transform infrared spectroscopy of serum in sports medicine: health monitoring of athletes and prevention of doping. Sports Med 2000; 29: 387–96

    Article  PubMed  CAS  Google Scholar 

  75. Budgett R, Newsholme E, Lehmann M, et al. Redefining the overtraining syndrome as the unexplained underperformance syndrome. Br J Sports Med 2000; 34: 67–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Petibois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petibois, C., Cazorla, G., Poortmans, JR. et al. Biochemical Aspects of Overtraining in Endurance Sports. Sports Med 32, 867–878 (2002). https://doi.org/10.2165/00007256-200232130-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200232130-00005

Keywords

Navigation