Skip to main content
Log in

Long-Term Metabolic and Skeletal Muscle Adaptations to Short-Sprint Training

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The adaptations of muscle to sprint training can be separated into metabolic and morphological changes. Enzyme adaptations represent a major metabolic adaptation to sprint training, with the enzymes of all three energy systems showing signs of adaptation to training and some evidence of a return to baseline levels with detraining. Myokinase and creatine phosphokinase have shown small increases as a result of short-sprint training in some studies and elite sprinters appear better able to rapidly breakdown phosphocreatine (PCr) than the sub-elite. No changes in these enzyme levels have been reported as a result of detraining. Similarly, glycolytic enzyme activity (notably lactate dehydrogenase, phosphofructokinase and glycogen phosphorylase) has been shown to increase after training consisting of either long (>10-second) or short (<10-second) sprints. Evidence suggests that these enzymes return to pre-training levels after somewhere between 7 weeks and 6 months of detraining. Mitochondrial enzyme activity also increases after sprint training, particularly when long sprints or short recovery between short sprints are used as the training stimulus.

Morphological adaptations to sprint training include changes in muscle fibre type, sarcoplasmic reticulum, and fibre cross-sectional area. An appropriate sprint training programme could be expected to induce a shift toward type IIa muscle, increase muscle cross-sectional area and increase the sarcoplasmic reticulum volume to aid release of Ca2+. Training volume and/or frequency of sprint training in excess of what is optimal for an individual, however, will induce a shift toward slower muscle contractile characteristics. In contrast, detraining appears to shift the contractile characteristics towards type IIb, although muscle atrophy is also likely to occur. Muscle conduction velocity appears to be a potential non-invasive method of monitoring contractile changes in response to sprint training and detraining.

In summary, adaptation to sprint training is clearly dependent on the duration of sprinting, recovery between repetitions, total volume and frequency of training bouts. These variables have profound effects on the metabolic, structural and performance adaptations from a sprint-training programme and these changes take a considerable period of time to return to baseline after a period of detraining. However, the complexity of the interaction between the aforementioned variables and training adaptation combined with individual differences is clearly disruptive to the transfer of knowledge and advice from laboratory to coach to athlete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Hopkins WG, Schabort EJ, Hawley JA. Reliability of power in physical performance tests. Sports Med 2001; 31 (3): 211–34

    Article  PubMed  CAS  Google Scholar 

  2. Jenkins DG, Brooks S, Williams C. Improvements in multiple sprint ability with three weeks of training. NZ J Sports Med 1994; 22 (1): 2–5

    Google Scholar 

  3. Linossier MT, Denis C, Dormois D, et al. Ergometric and metabolic adaptations to a 5 s sprint training programme. Eur J Appl Physiol 1993; 68: 408–14

    Article  Google Scholar 

  4. Anderson JL, Klitgaard H, Saltin B. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training. Acta Physiol Scand 1994; 151: 135–42

    Article  Google Scholar 

  5. Nevill ME, Boobis LH, Brooks S, et al. Effect of training on muscle metabolism during treadmill sprinting. JAppl Physiol 1989; 67 (6): 2376–82

    CAS  Google Scholar 

  6. Cadefau J, Casademont J, Grau JM, et al. Biochemical and histochemical adaptation to sprint training in young athletes. Acta Physiol Scand 1990; 140: 341–51

    Article  PubMed  CAS  Google Scholar 

  7. McKenna MJ, Schmidt TA, Hargreaves M, et al. Sprint training increases human skeletal muscle Na+-K+-ATPase concentration and improves K+ regulation. J Appl Physiol 1993; 75: 173–80

    PubMed  CAS  Google Scholar 

  8. Sleivert GG, Backus RD, Wenger HA. Neuromuscular differences between volleyball players, middle distance runners and untrained controls. Int J Sports Med 1995; 16 (5): 390–8

    Article  PubMed  CAS  Google Scholar 

  9. Delecluse C, Van-Coppenolle H, Willems E, et al. Influence of high resistance and high velocity training on sprint performance. Med Sci Sport Exerc 1995; 27 (8): 1203–9

    Article  CAS  Google Scholar 

  10. Dawson B, Fitzsimmons M, Green S, et al. Changes in performance, muscle metabolites, enzymes and fibre types after short sprint training. Eur J Appl Physiol 1998; 78: 163–9

    Article  CAS  Google Scholar 

  11. Harridge SDR, Bottinelli R, Canepari M, et al. Sprint training, in vitro and in vivo muscle function, and myosin heavy chain expression. J Appl Physiol 1998; 84 (2): 442–9

    PubMed  CAS  Google Scholar 

  12. Ørtenblad N, Lunde PK, Levin K, et al. Enhanced sarcoplasmic reticulum Ca2+ release following intermittent sprint training. Am J Physiol 2000; 279: R152–60

    Google Scholar 

  13. Esbjornsson M, Hellsten-Westing Y, Balsom PD, et al. Muscle fibre type changes with sprint training: effect of training pattern. Acta Physiol Scand 1993; 149: 245–6

    Article  PubMed  CAS  Google Scholar 

  14. Allemeier CA, Fry AC, Johnson P, et al. Effects of sprint cycle training on human skeletal muscle. J Appl Physiol 1994; 77 (5): 2385–90

    PubMed  CAS  Google Scholar 

  15. Jacobs I, Esbjornsson M, Sylven C, et al. Sprint training effects on muscle myoglobin, enzymes, fiber types, and blood lactate. Med Sci Sports Exerc 1987; 19: 368–74

    PubMed  CAS  Google Scholar 

  16. Parra J, Cadefau JA, Rodas G, et al. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiol Scand 2000; 169: 157–65

    Article  PubMed  CAS  Google Scholar 

  17. Francis C, Coplon J. Speed trap — inside the biggest scandal in olympic history. New York (NY): St. Martin’s Press, 1991

    Google Scholar 

  18. Penfold L, Jenkins D. Training for speed. In: Reaburn P, Jenkins D, editors. Training speed and endurance. St Leonards (NSW): Allen and Unwin, 1996: 24–41

    Google Scholar 

  19. Linossier MT, Dormois D, Geyssant A, et al. Performance and fibre characteristics of human skeletal muscle during short sprint training and detraining on a cycle ergometer. Eur JAppl Physiol 1997; 75: 491–8

    Article  CAS  Google Scholar 

  20. Anderson JL, Aagaard P. Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve 2000; 23 (7): 1095–104

    Article  Google Scholar 

  21. Hortobágyi T, Houmard JA, Stevenson JR, et al. The effects of detraining on power athletes. Med Sci Sports Exerc 1993; 25 (8): 929–35

    PubMed  Google Scholar 

  22. Anderson-Johns R, Houmard JA, Kobe RW, et al. Effects of taper on swim power, stroke distance, and performance. Med Sci Sports Exerc 1992; 24 (10): 1141–6

    Google Scholar 

  23. MacDougall JD, Hicks AL, MacDonald JR, et al. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 1998; 84 (6): 2138–42

    PubMed  CAS  Google Scholar 

  24. Jansson E, Esbjornsson M, Holm I, et al. Increase in the proportion of fast-twitch muscle fibres by sprint training in males. Acta Physiol Scand 1990; 140: 359–63

    Article  PubMed  CAS  Google Scholar 

  25. Hirvonen J, Rehunen S, Rusko H, et al. Breakdown of high-energy phosphate compounds and lactate accumulation dur- ing short supramaximal exercise. Eur J Appl Physiol 1987; 56: 253–9

    Article  CAS  Google Scholar 

  26. Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 1993; 75 (2): 712–9

    PubMed  CAS  Google Scholar 

  27. Bogdanis GC, Nevill ME, Lakomy HKA, et al. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol Scand 1998; 163: 261–72

    Article  PubMed  CAS  Google Scholar 

  28. Jacobs I, Tesch PA, Bar-Or O, et al. Lactate in human skeletal muscle after 10 and 30s of supramaximal exercise. J Appl Physiol 1983; 55: 365–7

    PubMed  CAS  Google Scholar 

  29. Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 1996; 80 (3): 876–84

    PubMed  CAS  Google Scholar 

  30. McCartney N, Spriet LL, Heigenhauser GJF, et al. Muscle power and metabolism in maximal intermittent exercise. J Appl Physiol 1986; 60: 1164–9

    PubMed  CAS  Google Scholar 

  31. Nevill M. Editorial: first impressions. J Sports Sci 2000; 18 (11): 847

    Article  Google Scholar 

  32. Fournier M, Ricci J, Taylor AW, et al. Skeletal muscle adaptation in adolescent boys: sprint and endurance training and detraining. Med Sci Sports Exerc 1982; 14 (6): 453–6

    Article  PubMed  CAS  Google Scholar 

  33. Hellsten-Westing Y, Balsom PD, et al. The effect of high intensity training on purine metabolismin man. Acta Physiol Scand 1993; 149: 405–12

    Article  PubMed  CAS  Google Scholar 

  34. Linnosier MT, Dormois D, Perier C, et al. Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining. Acta Physiol Scand 1997; 161: 439–45

    Article  Google Scholar 

  35. Roberts AD, Billeter R, Howald H. Anaerobic muscle enzyme changes after interval training. Int J Sports Med 1982; 3: 18–21

    Article  PubMed  CAS  Google Scholar 

  36. Simoneau J-A, Lortie G, Boulay MR, et al. Effects of two high-intensity intermittent training programs interspaced by detraining on human skeletal muscle and performance. Eur J Appl Physiol 1987; 56: 516–21

    Article  CAS  Google Scholar 

  37. Thorstensson A, Sjodin B, Karlsson J. Enzyme activities and muscle strength after ‘sprint training’ in man. Acta Physiol Scand 1975; 94: 313–8

    Article  PubMed  CAS  Google Scholar 

  38. Hultman E, Sjoholm H. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. J Physiol 1983; 345: 525–32

    PubMed  CAS  Google Scholar 

  39. Hautier CA, Wouassi D, Arsac LM, et al. Relationships between postcompetition blood lactate concentration and average running velocity over 100m and 200m races. Eur J Appl Physiol 1994; 68: 508–13

    Article  CAS  Google Scholar 

  40. Locatelli E, Arsac L. The mechanics and energetics of the 100m sprint. New Stud Athletics 1995; 10 (1): 81–7

    Google Scholar 

  41. Sharp RL, Costill DL, Fink WJ, et al. Effects of eight weeks of bicycle ergometer sprint training on human muscle buffer capacity. Int J Sports Med 1986; 7: 13–7

    Article  PubMed  CAS  Google Scholar 

  42. Costill DL, Daniels J, Evans W, et al. Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 1976; 40: 149–54

    PubMed  CAS  Google Scholar 

  43. Boobis LH, Williams C, Wooton SA. Influence of sprint training on muscle metabolism during brief maximal exercise in man. J Physiol 1983; 342: 36P-7P

    Google Scholar 

  44. Tesch PA, Wright JE, Vogel JA, et al. The influence of muscle metabolic characteristics on physical performance. Eur J Appl Physiol Occup Physiol 1985; 54 (3): 237–43

    Article  PubMed  CAS  Google Scholar 

  45. Houston ME, Wilson DM, Green HJ, et al. Physiological and muscle enzyme adaptations to two different intensities of swim training. Eur J Appl Physiol 1981; 46: 283–91

    Article  CAS  Google Scholar 

  46. McKenna MJ, Heigenhauser GJF, McKelvie RS, et al. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men. J Physiol 1997; 501 (3): 703–16

    Article  PubMed  CAS  Google Scholar 

  47. Cunningham DA, Faulkner JA. The effect of training on aerobic and anaerobic metabolism during a short exhaustive run. Med Sci Sports 1969; 1 (2): 65–9

    Google Scholar 

  48. Volek JS, Kraemer WJ. Creatine supplementation: its effect on muscle performance and body composition. J Strength Cond Res 1996; 10 (3): 200–10

    Google Scholar 

  49. Hellsten-Westing Y, Norman B, Balsom PD, et al. Decreased resting levels of adenine nucleotides in human skeletal muscle after high intensity training. J Appl Physiol 1993; 74 (5): 2523–8

    PubMed  CAS  Google Scholar 

  50. Lowenstein JM. The purine nucleotide cycle revised. Int J Sports Med 1990; 11: 37–45

    Article  Google Scholar 

  51. Sabina RL, Holmes EW. Disorders of purine nucleotide metabolism in muscle. In: Taylor AW, Gollnick PD, Green HJ, et al., editors. Biochemistry of exercise. VII. Champaign (IL): Human Kinetics, 1990: 227–41

    Google Scholar 

  52. Stathis CG, Febbraio MA, Carey MF, et al. Influence of sprint training on human skeletal muscle purine nucleotide metabolism. J Appl Physiol 1994; 76 (4): 1802–9

    PubMed  CAS  Google Scholar 

  53. Spriet LL. Anaerobic metabolism in human skeletal muscle during short-term intense activity. Can J Physiol Pharm 1990; 70: 157–65

    Article  Google Scholar 

  54. Ferenczi MA, Goldman YE, Simmons RM. The dependence on force and shortening velocity on substrate concentration in skinned muscle fibres from rana temporaria. J Physiol 1984; 350: 519–43

    PubMed  CAS  Google Scholar 

  55. Asmussen E, Klausen K, Nielsen LE, et al. Lactate production and anaerobic work capacity after prolonged exercise. Acta Physiol Scand 1974; 90 (4): 731–42

    Article  PubMed  CAS  Google Scholar 

  56. Hargreaves M, McKenna MJ, Jenkins DG, et al. Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol 1998; 84 (5): 1687–91

    PubMed  CAS  Google Scholar 

  57. Green HJ. Mechanisms of muscle fatigue in intense exercise. J Sports Sci 1997; 15: 247–56

    Article  PubMed  CAS  Google Scholar 

  58. Juel C. Muscle pH regulation: role of training. Acta Physiol Scand 1998; 162: 359–66

    Article  PubMed  CAS  Google Scholar 

  59. Allen DG, Westerblad H, Lännergren J. The role of intracellular acidosis in muscle fatigue. In: Gandevia S, Enoka R, McComas A, et al., editors. Fatigue-neural and muscular mechanisms. New York (NY): Plenum Press, 1995: 57–68

    Google Scholar 

  60. Parkhouse WS, McKenzie DC. Possible contribution of skeletal muscle buffers to enhanced anaerobic performance: a brief review. Med Sci Sports 1984; 16 (4): 328–38

    CAS  Google Scholar 

  61. Sahlin K, Hendriksson J. Buffer capacity and lactate accumulation in skeletal muscle of trained and untrained men. Acta Physiol Scand 1984; 122 (3): 331–9

    Article  PubMed  CAS  Google Scholar 

  62. Bell GJ, Wenger HA. The effect of one-legged sprint training on intramuscular pH and non-bicarbonate buffering capacity. Eur J Appl Physiol 1988; 58: 158–64

    Article  CAS  Google Scholar 

  63. Pette D, Staron RS. Cellular and molecular diversities of mammalian skeletal muscle fibres. Rev Physiol Biochem Pharmacol 1990; 116: 1–76

    PubMed  CAS  Google Scholar 

  64. Brooke MH, Kaiser KK. Muscle fibre types: how many and what kind? Arch Neurol 1970; 23 (4): 369–79

    Article  PubMed  CAS  Google Scholar 

  65. Green HJ. Myofibrillar composition and mechanical function in mammalian skeletal muscle. Sport Sci Rev 1992; 1: 43–64

    Google Scholar 

  66. Staron RS, Pette D. The multiplicity of myosin light and heavy chain combinations in histochemically typed single fibres: rabbit soleus muscle. Biochem J 1987; 243: 687–93

    PubMed  CAS  Google Scholar 

  67. Bottinelli R, Pellegrino MA, Canepari M, et al. Specific contributions of various muscle fibre types to human muscle performance: an in vitro study. J Electromyogr Kinesiol 1999; 9: 97–5

    Article  Google Scholar 

  68. Steinen GJM, Kiers JL, Bottinelli R, et al. Myofibrillar ATPase in skinned human skeletal muscle fibres: fibre type and temperature dependence. J Physiol 1996; 76: 493: 299–307

    Google Scholar 

  69. Klitgaard H, Bergman O, Betto R, et al. Co-existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training. Pflugers Arch 1990 Jun; 416 (4): 470–2

    Article  PubMed  CAS  Google Scholar 

  70. Bottinelli R, Schiaffino S, Reggiaini C. Force velocity relations and myosin heavy chain isoform compositions of skinned fibres from rat skeletal muscle. J Physiol 1991; 437: 655–72

    PubMed  CAS  Google Scholar 

  71. Anderson JL, Schjerling P, Saltin B. Muscle genes and athletic performance. Sci Am 2000 Sep: 48–55

  72. Widrick JJ, Trappe SW, Costill DL, et al. Force velocity and force-power properties from elite master runners and sedentary men. Am J Physiol, 1996; 271 (2 Pt 1): C676–83

    Google Scholar 

  73. Anderson JL, Schiaffino S. Mismatch between myosin heavy chain mRNA and protein distribution in human skeletal muscle fibers. Am J Physiol 1997; 272 (41): C1881–9

    Google Scholar 

  74. Anderson JL, Terzis G, Kryger A. Increase in the degree of co-expression of myosin heavy chain isoforms in skeletal muscle fibres of the very old. Muscle Nerve 1999; 22: 449–54

    Article  Google Scholar 

  75. Burnham R, Martin T, Stein R, et al. Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord 1997; 35: 86–91

    Article  PubMed  CAS  Google Scholar 

  76. Pette D. Training effects on the contractile apparatus. Acta Physiol Scand 1998; 162: 367–76

    Article  PubMed  CAS  Google Scholar 

  77. Esbjornsson-Liljdahl M, Holm I, Sylvén C, et al. Different responses of skeletal muscle following sprint training in men and women. Eur J Appl Physiol 1996; 74: 375–83

    Article  Google Scholar 

  78. Simoneau J-A, Lortie G, Boulay MR, et al. Human skeletal muscle fibre type alteration with high intensity intermittent training. Eur J Appl Physiol 1985; 54: 250–3

    Article  CAS  Google Scholar 

  79. Denis C, Linossier MT, Dormoois D, et al. Power and metabolic responses during supramaximal exercise in 100m and 800m runners. Scand J Med Sci Sports 1992; 2: 62–9

    Article  Google Scholar 

  80. Esbjornsson M, Sylven C, Holm I, et al. Fast twitch fibres may predict anaerobic performance in both females and males. Int J Sports Med 1993; 14: 257–63

    Article  PubMed  CAS  Google Scholar 

  81. Mero A, Luhtanen P, Viitaslo JT, et al. Relationship between the maximal running velocity, muscle fibre characteristics, force production and force relaxation of sprinters. Scand J Sports Sci 1981; 3: 16–22

    Google Scholar 

  82. Maffiuletti NA, Martin A, Babault N, et al. Electrical and mechanical Hmax to Mmax ratio in power- and endurance-trained athletes. J Appl Physiol 2001; 90: 3–9

    PubMed  CAS  Google Scholar 

  83. Carrington CA, Fisher W, White MJ. The effects of athletic training and muscle contractile character in the pressor response to isometric exercise of the humans triceps surae. Eur J Appl Physiol 1999; 80: 337–43

    Article  CAS  Google Scholar 

  84. Goldspink G, Scutt A, Martindale J, et al. Stretch and force generation induce rapid hypertrophy and myosin isoform gene switching in adult skeletal muscle. Biochem Soc Trans 1994; 19: 368–73

    Article  Google Scholar 

  85. Stevens L, Firinga C, Gohlsch B, et al. Effects of unweighting and clenbuterol on myosin light and heavy chains in fast and slow muscles of rat. Am J Physiol Cell Physiol 2000; 279 (5): C1558–63

    Google Scholar 

  86. Ausoni S, Gorza L, Schiaffino S, et al. Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J Neurosci 1990; 10 (1): 153–60

    PubMed  CAS  Google Scholar 

  87. Baldwin KM, Valdez V, Herrick RE, et al. Biochemical properties of overloaded fast-twitch skeletal muscle. J Appl Physiol 1982; 52 (2): 467–72

    PubMed  CAS  Google Scholar 

  88. Kadi F, Thornell LE. Training affects myosin heavy chain phenotype in the trapezius muscle of women. Histochem Cell Biol 1999; 112: 73–8

    Article  PubMed  CAS  Google Scholar 

  89. Staron RS, Karapondo DL, Kraemer WJ, et al. Skeletal muscle adaptation during early phase of heavy resistance training in men and women. J Appl Physiol 1994; 76: 1247–55

    PubMed  CAS  Google Scholar 

  90. Staron RS, Leonardi MJ, Karapondo DL, et al. Strength and skeletal muscle adaptations in heavy-resistance-trained women after detraining and retraining. J Appl Physiol 1991; 70 (2): 631–40

    PubMed  CAS  Google Scholar 

  91. Ishida K, Moritani T, Itoh K. Changes in voluntary and electrically induced contractions during strength training and detraining. Eur J Appl Physiol 1990; 60: 244–8

    Article  CAS  Google Scholar 

  92. Wiemann K, Tidow G. Relative activity of hip and knee extensors in sprinting and implications for training. New Stud Athletics 1995; 10 (1): 29–49

    Google Scholar 

  93. Trappe S, Costill D, Thomas R. Effect of swim taper on whole muscle and single muscle fiber contractile properties. Med Sci Sports Exerc 2000; 32 (12): 48–56

    PubMed  Google Scholar 

  94. Alway SE, MacDougall JD, Sale DG, et al. Functional and structural adaptations in skeletal muscle of trained athletes. J Appl Physiol 1988; 64 (3): 1114–20

    PubMed  CAS  Google Scholar 

  95. Alway SE. Characteristics of the elbow flexors in women bodybuilders using androgenic-anabolic steroids. J Strength Cond Res 1994; 8 (3): 161–9

    Google Scholar 

  96. Chu A, Saito A, Fleisher S. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle. Arch Biochem Biophys 1987; 258 (1): 13–23

    Article  PubMed  CAS  Google Scholar 

  97. Kugelberg E, Thornell L-E. Contraction time, histochemical type and terminal cisternae volume of rat motor units. Muscle Nerve 1983; 6: 149–53

    Article  PubMed  CAS  Google Scholar 

  98. Ruegg JC. Calcium in muscle activation: cellular and molecular physiology. 2nd ed. Berlin: Springer Verlag, 1992

    Google Scholar 

  99. Carroll SL, Klein MG, Schneider MF. Decay of calcium transients after electrical stimulation in rat fast- and slow-twitch muscle fibres. J Physiol 1997; 501 (3): 573–88

    Article  PubMed  CAS  Google Scholar 

  100. Green HJ. Cation pumps in skeletal muscle: potential role in muscle fatigue. Acta Physiol Scand 1998; 162: 201–13

    Article  PubMed  CAS  Google Scholar 

  101. Midrio M, Danieli-Betto D, Megighian A, et al. Early effects of denervation on sarcoplasmic reticulum properties of slow twitch rat muscle fibres. Pflugers Arch 1997; 434: 398–405

    Article  PubMed  CAS  Google Scholar 

  102. Hicks A, Ohlendieck K, Göpel SO, et al. Early functional and biochemical adaptations to low frequency stimulation of rabbit fast twitch muscle. Am J Physiol 1997; 273 (1 Pt 1): C297–305

    Google Scholar 

  103. Sadoyama T, Masuda T, Miyata H, et al. Fibre conduction velocity and fibre composition in human vastus lateralis. Eur J Appl Physiol Occup Physiol 1988; 57: 767–71

    Article  PubMed  CAS  Google Scholar 

  104. Kupa EJ, Roy SH, Kandarian SC, et al. Effects of muscle fibre type and size on EMG median frequency and conduction-velocity. J Appl Physiol 1995; 79: 23–32

    PubMed  CAS  Google Scholar 

  105. Bianchi S, Rossi B, Siciliano G, et al. Quantitative evaluations of systemic and neuromuscular modifications induced by specific training in sedentary subjects. Med Sport (Roma) 1997; 50 (1): 15–29

    Google Scholar 

  106. Matsunaga S, Sadoyama T, Miyata H, et al. The effects of strength training on muscle fibre conduction velocity of surface action potential. Jpn J Phys Fitness Sports Med 1990; 39 (2): 99–105

    Google Scholar 

  107. Gavira M, Ohanna F. Variability of the fatigue response of paralysed skeletal muscle in relation to the time after spinal cord injury: mechanical and electrophysiological characteristics. Eur J Appl Physiol 1999; 80 (2): 145–53

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr David Jenkins for his insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus Ross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, A., Leveritt, M. Long-Term Metabolic and Skeletal Muscle Adaptations to Short-Sprint Training. Sports Med 31, 1063–1082 (2001). https://doi.org/10.2165/00007256-200131150-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200131150-00003

Keywords

Navigation