Skip to main content
Log in

Factors Affecting Performance in an Ultraendurance Triathlon

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

In the recent past, researchers have found many key physiological variables that correlate highly with endurance performance. These include maximal oxygen uptake (V̇O2max, anaerobic threshold (AT), economy of motion and the fractional utilisation of oxygen uptake (V̇O2). However, beyond typical endurance events such as the marathon, termed ‘ultraendurance’ (i.e. >4 hours), performance becomes harder to predict. The ultraendurance triathlon (UET) is a 3-sport event consisting of a 3.8km swim and a 180km cycle, followed by a 42.2km marathon run. It has been hypothesised that these triathletes ride at approximately their ventilatory threshold (Tvent) during the UET cycling phase. However, laboratory assessments of cycling time to exhaustion at a subject’s AT peak at 255 minutes. This suggests that the AT is too great an intensity to be maintained during a UET, and that other factors cause detriments in prolonged performance. Potential defeating factors include the provision of fuels and fluids due to finite gastric emptying rates causing changes in substrate utilisation, as well as fluid and electrolyte imbalances. Thus, an optimum ultraendurance intensity that may be relative to the AT intensity is needed to establish ultraendurance intensity guidelines. This optimal UET intensity could be referred to as the ultraendurance threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1

Similar content being viewed by others

References

  1. Sleivert GG, Rowlands DS. Physical and physiological factors associated with success in the triathlon. Sports Med 1996; 22 (1): 8–18

    PubMed  CAS  Google Scholar 

  2. Dengel DR, Flynn MG, Costill DL, et al. Determinants of success during triathlon competition. Res Q Exerc Sport 1989; 60 (3): 234–8

    PubMed  CAS  Google Scholar 

  3. O’Toole ML, Douglas PS, Hiller WD. Lactate, oxygen uptake, and cycling performance in triathletes. Int J Sports Med 1989; 10 (6): 413–8

    PubMed  Google Scholar 

  4. Langill RH, Rhodes EC. Prediction of triathlon performance from ventilatory threshold measurements. [Unpublished thesis]. Vancouver: School of Human Kinetics, The University of British Columbia, March, 1993

    Google Scholar 

  5. Miura H, Kitagawa K, Ishiko T. Economy during a simulated laboratory test triathlon is highly related to Olympic distance triathlon. Int J Sports Med 1997; 18 (4): 276–80

    PubMed  CAS  Google Scholar 

  6. van Rensburg JP, Kielblock AJ, van der Linde A. Physiologic and biochemical changes during a triathlon competition. Int J Sports Med 1986; 7 (1): 30–5

    PubMed  Google Scholar 

  7. Noakes TD, Goodwin N, Rayner BL, et al. Water intoxication: a possible complication during endurance exercise. Med Sci Sports Exerc 1985; 7: 370–5

    Google Scholar 

  8. Kreider RB. Physiological considerations of ultraendurance performance. Int J Sports Nutr 1991; 1 (1):3–27

    CAS  Google Scholar 

  9. Hawley JA, Hopkins WG. Aerobic glycolytic and aerobic lipolytic power systems; a new paradigm with implications for endurance and ultraendurance events. Sports Med 1995; 19 (4): 240–50

    PubMed  CAS  Google Scholar 

  10. Hiller WDB. Dehydration and hyponatremia during triathlons. Med Sci Sports Exerc 1989; 21 (5): S219–21

    Google Scholar 

  11. O’Toole ML, Hiller WDB, Douglas PS, et al. Cardiovascular responses to prolonged cycling and running. Ann Sports Med 1987; 3: 124–30

    Google Scholar 

  12. Wasserman K. The anaerobic threshold measurement to evaluate exercise performance. Am Rev Respir Dis 1984; 129 (2 Pt 2): S35–40

    CAS  Google Scholar 

  13. Petit MA, Melson CM, Rhodes EC. Comparison of a mathematical model to predict 10km performance from the Conconi test and ventilatory threshold measurements. Can J Appl Physiol 1997; 22 (6): 562–72

    PubMed  CAS  Google Scholar 

  14. Rhodes EC, McKenzie DC. Predicting marathon time from anaerobic threshold measurements. Phys Sport Med 1984; 12 (1): 95–9

    Google Scholar 

  15. Barlow K, Weltman A, Schurrer R, et al. Prediction of maximal effort bicycle ergometer endurance performance. Int J Sports Med 1985; 6 (4): 190–6

    PubMed  CAS  Google Scholar 

  16. Nichols JF, Phares SL, Buono MJ. Relationship between blood lactate response to exercise and endurance performance in competitive female master cyclists. Int J Sports Med 1997; 18 (6): 458–63

    PubMed  CAS  Google Scholar 

  17. Hoogeveen AR, Schep G. The plasma lactate response to exercise and endurance performance: relationships in elite triathletes. Int J Sports Med 1997; 18 (7): 526–30

    PubMed  CAS  Google Scholar 

  18. O’Toole ML, Hiller DB, Crosby LO, et al. The ultraendurance triathlete: a physiological profile. Med Sci Sports Exerc 1987; 19 (1): 45–50

    PubMed  Google Scholar 

  19. Holly RG, Barnard RJ, Rosenthal M, et al. Triathlete characterization and response to prolonged strenuous competition. Med Sci Sports Exerc 1986; 18 (1): 123–7

    PubMed  CAS  Google Scholar 

  20. Zhou S, Robson SJ, King MJ, et al. Correlations between short-course triathlon performance and physiological variables determined in laboratory cycle and treadmill tests. J Sports Med Phy s Fitness 1997; 37 (2): 122–30

    CAS  Google Scholar 

  21. Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev 1995; 23: 25–63

    PubMed  CAS  Google Scholar 

  22. Kohrt WM, O’Connor JS, Skinner JS. Longitudinal assessment of responses by triathletes to swimming, cycling, and running. Med Sci Sports Exerc 1989; 21 (5): 569–75

    PubMed  CAS  Google Scholar 

  23. Sleivert GG, Wenger HA. Physiological predictors of short-course triathlon performance. Med Sci Sports Exerc 1993; 25 (7): 871–6

    PubMed  CAS  Google Scholar 

  24. Butts NK, Henry BA, Mclean D. Correlations between VO2max, and performance times of recreational triathletes. J Sports Med Phys Fitness 1991; 31 (3): 339–44

    PubMed  CAS  Google Scholar 

  25. Coyle EF, Feltner ME, Kautz SA, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 1991; 23 (1): 93–107

    PubMed  CAS  Google Scholar 

  26. Bishop D, Jenkins DG, Mackinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc 1998; 30 (8): 1270–5

    PubMed  CAS  Google Scholar 

  27. Farrel PA, Wilmore JH, Coyle EF, et al. Plasma lactate accumulation and distance running performance. Med Sci Sports 1979; 11 (4): 338–44

    Google Scholar 

  28. Peronnet F, Thibault G, Rhodes EC, et al. Correlations between ventilatory threshold and endurance capability in marathon runners. Med Sci Sports Exerc 1987; 19: 610–5

    PubMed  CAS  Google Scholar 

  29. De Vito G, Bernardi M, Sproviero E, et al. Decrease of endurance performance during Olympic triathlon. Int J Sports Med 1995; 16 (1): 24–8

    PubMed  Google Scholar 

  30. Kreider RB, Boone T, Thompson WR. Cardiovascular and thermal responses of triathlon performance. Med Sci Sports Exere 1988; 20 (4): 385–90

    CAS  Google Scholar 

  31. Laursen PB, Rhodes EC, Langill RH. The effects of 3000m-swimming on subsequent 3-h cycling performance; implications for ultraendurance triathletes. Eur J Appl Physiol 2000; 83 (1): 28–33

    PubMed  CAS  Google Scholar 

  32. Coyle EF. Fluid and carbohydrate replacement during exercise: how much and why? Sports Sci Exchange 1994; 7: 3, 50

    Google Scholar 

  33. Laursen PB, Rhodes EC. Physiological analysis of a high intensity ultraendurance event. Strength Conditioning J 1999; 21 (1): 26–38

    Google Scholar 

  34. O’Toole ML, Douglas PS. Applied physiology of triathlon. Sports Med 1995; 19 (4): 251–67

    PubMed  Google Scholar 

  35. Applegate EA. Nutritional considerations for ultraendurance performance. Int J Sport Nutr 1991; 1 (2): 118–26

    PubMed  CAS  Google Scholar 

  36. Anderson M, Bergman EA, Nethery VM. Preexercise meal affects ride time to fatigue in trained cyclists. J Am Diet Ass 1994; 94: 1152–3

    CAS  Google Scholar 

  37. Case S, Evans D, Tibbets G. Dietary intakes of participants in the IditaSport Human Powered Ultra-marathon. Alaska Med 1995; 37 (1): 20–4

    PubMed  CAS  Google Scholar 

  38. Fallowfield JL, Williams C, Singh R. The influence of ingesting a carbohydrate electrolyte beverage during 4 hours of recovery on subsequent endurance capacity. Int J Sport Nutr 1995; 5: 285–99

    PubMed  CAS  Google Scholar 

  39. Rauch HG, Hawley JA, Woodey M, et al. Effects of ingesting a sports bar versus glucose polymer on substrate utilisation and ultraendurance performance. Int J Sports Med 1999; 20 May (4): 252–7

    PubMed  CAS  Google Scholar 

  40. Applegate E. Nutritional concerns of the ultraendurance triathlete. Med Sci Sports Exerc 1989; 21 (5): S205–8

    Google Scholar 

  41. Lamb DR, AC Snyder, Baur TS. Muscle glycogen loading with a liquid carbohydrate supplement. J Sport Nutr 1991; 1: 52–60

    CAS  Google Scholar 

  42. Tarnopolsky MA, Dyson K, Atkinson SA, et al. Mixed carbohydrate supplementation increases carbohydrate oxidation and endurance exercise performance and attenuates potassium accumulation. Int J Sport Nutr 1996; 6: 323–36

    PubMed  CAS  Google Scholar 

  43. Tsintzas K, Williams C. Human muscle glycogen metabolism during exercise. Sports Med 1998; 25 (1): 7–23

    PubMed  CAS  Google Scholar 

  44. Sherman WM, Brodowicz G, Wright DA, et al. Effects of 4 hours preexercise carbohydrate feedings on cycling performance. Med Sci Sport Exerc 1989; 21 (5): 598–604

    CAS  Google Scholar 

  45. Walton PT, Rhodes EC. The effects of solid and liquid CHO ingestion on high-intensity intermittent exercise performance. Biol Sport 1997; 14: 45–54

    Google Scholar 

  46. Peters HP, van Schelven WF, Verstappen PA, et al. Exercise performance as a function of semi-solid and liquid carbohydrate feedings during prolonged exercise. Int J Sports Med 1995; 16 (2): 105–13

    PubMed  CAS  Google Scholar 

  47. Palmer GS, Borghouts LB, Noakes TD, et al. Metabolic and performance responses to constant-load vs. variable-intensity exercise in trained cyclists. J Appl Physiol 1999; 87 (3): 1186–96

    PubMed  CAS  Google Scholar 

  48. Coyle EF, Montain SJ. Carbohydrate and fluid ingestion during exercise: are there trade-offs? Med Sci Sports Exerc 1992; 24 (6): 671–87

    PubMed  CAS  Google Scholar 

  49. Langenfeld ME, Seifert JG, Rudge SR, et al. Effect of carbohydrate ingestion on performance of non-fasted cyclists during a simulated 80-mile time trial. J Sports Med Phys Fitness 1994; 34 (3): 263–70

    PubMed  CAS  Google Scholar 

  50. Craig BW. The influence of fructose feeding on physical performance. Am J Clin Nutr 1993; 58 Suppl. 5: 815S-819S

    Google Scholar 

  51. Walberg-Rankin J. Dietary carbohydrate as an ergogenic aid for prolonged and brief competitions in sport. Int J Sport Nutr 1995; 5: S 13–28

    Google Scholar 

  52. Brouns F, Saris WHM, Rehrer NJ. Abdominal complaints and gastrointestinal function during long-lasting exercise. Int J Sports Med 1987; 8: 175–89

    PubMed  CAS  Google Scholar 

  53. Alpers DH. Digestion and absorption of carbohydrates and proteins. In: Johnson LR, Alpers DH, Christensen J, et al., editors. Physiology of the gastrointestinal tract. 3rd ed. New York: Raven Press, 1994: 1723–50

    Google Scholar 

  54. Meyer JH, Elasholf J, Porter-Fink V, et al. Human postprandial gastric emptying of 1–3 millimeter spheres. Gastroenterology 1989; 94: 1315–25

    Google Scholar 

  55. Nielson HB, Svendsen LB, Jensen TH, et al. Exercise induced gastric mucosal acidosis. Med Sci Sports Exerc 1995; 27 (7): 1003–6

    Google Scholar 

  56. Rehrer NJ, Brouns F, Beckers EJ. Gastric emptying with repeated drinking during running and bicycling. Int J Sports Med 1990; 11: 238–43

    PubMed  CAS  Google Scholar 

  57. Clark N, Tobin J, Ellis C. Feeding the ultraendurance athlete: practical tips and a case study. J Am Diet Ass 1992; 92 (10): 1258–63

    CAS  Google Scholar 

  58. Singh A, Pelletier PA, Deuster PA. Dietary requirements for ultra-endurance exercise. Sports Med 1994; 18 (5): 301–8

    PubMed  CAS  Google Scholar 

  59. Okano G, Sato Y, Takumi Y, et al. Effect of 4h preexercise high carbohydrate and high fat meal ingestion on endurance performance and metabolism. Int J Sports Med 1996; 17 (7): 530–4

    PubMed  CAS  Google Scholar 

  60. Ranallo RF, Rhodes EC. Lipid metabolism during exercise. Sports Med 1998; 26 (1) 29–42

    PubMed  CAS  Google Scholar 

  61. Newsholme EA. The glucose/fatty acid cycle and physical exhaustion. Ciba Foundation Symposium 1981; 82: 89–101

    PubMed  CAS  Google Scholar 

  62. Dufaux B, Order U, Muller R, et al. Delayed effects of prolonged exercise on serum lipoproteins. Metabolism 1986; 35 (2): 105–9

    PubMed  CAS  Google Scholar 

  63. Thompson PD, Cullinaine E, Henderson LO, et al. Acute effects of prolonged exercise on serum lipids. Metabolism 1980; 29: 662–5

    PubMed  CAS  Google Scholar 

  64. Farber HW, Schaefer EJ, Franey R, et al. The endurance triathlon: metabolic changes after each event and during recovery. Med Sci Sport Exerc 1991; 23 (8): 959–65

    CAS  Google Scholar 

  65. Nagel D, Seiler D, Franz H. Biochemical, hematological and endocrinological parameters during repeated intense short-term running in comparison to ultra-long-distance running. Int J Sports Med 1992; 13 (4): 337–43

    PubMed  CAS  Google Scholar 

  66. Ginsburg GS, Agil A, O’Toole M, et al. Effects of a single bout of ultraendurance exercise on lipid levels and susceptibility of lipids to peroxidation in triathletes. JAMA 1996; 276 (3): 221–5

    PubMed  CAS  Google Scholar 

  67. Lindeman AK. Eating for endurance or ultraendurance. Phys Sports Med 1992; 20 (3): 87–104

    Google Scholar 

  68. Armstrong RB. Muscle damage and endurance events. Sports Med 1986; 3: 370–81

    PubMed  CAS  Google Scholar 

  69. Raschka C, Plath M, Cerull R, et al. The body muscle compartment and its relationship to food adsorption and blood chemistry during an extreme endurance performance. Z Emahrungswiss 1991; 30 (4): 276–88

    CAS  Google Scholar 

  70. Laird RH. Medical care at ultraendurance triathlons. Med Sci Sports Exerc 1989; 21 (5Supp1.): S222–5

    Google Scholar 

  71. Speedy DB, Faris JG, Hamlin M, et al. Hyponatremia and weight changes in an ultradistance triathlon. Clin J Sport Med 1997; 7: 180–4

    PubMed  CAS  Google Scholar 

  72. Speedy NB, Noakes TD, Rogers IR, et al. Hyponatremia in ultradistance triathletes. Med Sci Sports Exerc 1999; 31(6): 809–15

    PubMed  CAS  Google Scholar 

  73. Noakes TD. The hyponatremia of exercise. Int J Sport Nutr 1992; 2: 205–28

    PubMed  CAS  Google Scholar 

  74. Grant SM, Green HJ, Phillips SM, et al. Effects of acute expansion of plasma volume on cardiovascular and thermal function during prolonged exercise. Eur J Appl Physiol 1997; 76 (4): 356–62

    CAS  Google Scholar 

  75. Shaffrath JD, Adams WC. Effects of airflow and work load on cardiovascular drift and skin blood flow. J Appl Physiol 1984; 56 (5): 1411–7

    PubMed  CAS  Google Scholar 

  76. Heaps CL, Gonzalez-Alonso J, Coyle EF. Hypohydration causes cardiovascular drift without reducing blood volume. Int J Sports Med 1994; 15 (2): 74–9

    PubMed  CAS  Google Scholar 

  77. Hamilton MT, Gonzalez-Alonso J, Montain SJ, et al. Fluid replacement and glucose infusion during exercise prevent cardiovascular drift. J Appl Physiol 1991; 71 (3): 871–7

    PubMed  CAS  Google Scholar 

  78. McMurray RG. Plasma volume changes during submaximal swimming. Eur J Appl Physiol 1983; 51 (3): 347–56

    CAS  Google Scholar 

  79. Freund BJ, Joyner MJ, Jilka SM, et al. Thermoregulation during prolonged exercise in heat: alterations with beta-adrenergic blockade. J Appl Physiol 1987; 63 (3): 930–6

    PubMed  CAS  Google Scholar 

  80. Montain SJ, Coyle EF. Fluid ingestion during exercise increases skin blood flow independent of increases in blood volume. J Appl Physiol 1992; 73 (3): 903–10

    PubMed  CAS  Google Scholar 

  81. Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol 1992; 73 (4): 1340–50

    PubMed  CAS  Google Scholar 

  82. Hausswirth C, Bigard AX, Berthelot M, et al. Variability in energy cost of running at the end of a triathlon and a marathon. Int J Sports Med 1996; 17 (8): 572–9

    PubMed  CAS  Google Scholar 

  83. Thomas DP, Fregin GF. Cardiorespiratory drift during exercise in the horse. Equine Vet J Suppl 1990; (9): 61–5

  84. Friedmann B. Diagnosis of performance capacity and guided training for physical endurance. Ther Umsch 1998; 55 (4): 246–50

    PubMed  CAS  Google Scholar 

  85. Ivy JL, Costill DL, Van Handel PJ, et al. Alteration in the lactate threshold with changes in substrate availability. Int J Sports Med 1981; 2 (3): 139–42

    PubMed  CAS  Google Scholar 

  86. Glass C, Knowlton RG, Sanjabi PB, et al. The effect of exercise induced glycogen depletion on the lactate, ventilatory and electromyographic thresholds. J Sports Med Phys Fitness 1997; 37 (1): 32–40

    PubMed  CAS  Google Scholar 

  87. Black A, Ribeiro JP, Bochese MA. Effects of previous exercise on the ventilatory determination of the aerobic threshold. Eur J Appl Physiol 1984; 52 (3): 315–9

    CAS  Google Scholar 

  88. Neary PJ, Wenger HA. The effects of prior exercise on the lactate and ventilatory thresholds. J Sports Sci 1985; 3 (3): 189–95

    PubMed  CAS  Google Scholar 

  89. Rowbottom DG, Keast D, Green S, et al. The case history of an elite ultra-endurance cyclist who developed chronic fatigue syndrome. Med Sci Sports Exerc 1998; 30 (9): 1345–8

    PubMed  CAS  Google Scholar 

  90. Schneider DA, Lacroix KA, Atkinson GR, et al. Ventilatory threshold and maximal oxygen uptake during cycling and running in triathletes. Med Sci Sports Exerc 1990; 22 (2): 257–64

    PubMed  CAS  Google Scholar 

  91. Spinnewijn WE, Wallenburg HC, Struijk PC, et al. Peak ventilatory responses during cycling and swimming in pregnant and nonpregnant women. J Appl Physiol 1996; 81 (2): 738–42

    PubMed  CAS  Google Scholar 

  92. Borg G. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 17: 377–81

    Google Scholar 

  93. Faria IE. Energy expenditure, aerodynamics and medical problems in cycling. An update. Sports Med 1992; 14 (1): 43–63

    PubMed  CAS  Google Scholar 

  94. Roalstad M, Crosby L, O’Toole ML, et al. Heart rate monitoring during an ultraendurance event [abstract]. Med Sci Sports Exere Suppl 1987; 19 (2): S71

    Google Scholar 

  95. Davis JM, Bailey SP, Woods JA, et al. Effects of carbohydrate feedings on plasma free tryptophan and branched-chain amino acids during prolonged cycling. Eur J Appl Physiol 1992; 65 (6): 513–9

    CAS  Google Scholar 

  96. Loat CER, Rhodes EC. Comparison of the lactate and ventilatory thresholds during prolonged work. Biol Sport 1996; 13 (1): 3–12

    Google Scholar 

  97. Aunola S, Alanen E, Marniemi J, et al. The relation between cycling time to exhaustion and anaerobic threshold. Ergonomics 1990; 33 (8): 1027–42

    PubMed  CAS  Google Scholar 

  98. Boulay MR, Simoneau JA, Lortie G, et al. Monitoring high-intensity endurance exercise with heart rate and thresholds. Med Sci Sports Exerc 1997; 29 (1): 125–32

    PubMed  CAS  Google Scholar 

  99. Selley EA, Kolbe T, Van Zyl CG, et al. Running intensity as determined by heart rate is the same in fast and slow runners in both the 10- and 21-km races. J Sports Sci 1995; 13;405–10

    PubMed  CAS  Google Scholar 

  100. Sjodin B, Svendenhag J. Applied physiology of marathon running. Sports Med 1985; 2: 83–99

    PubMed  CAS  Google Scholar 

  101. Kreider RB, Cundiff DE, Hammett JB. Effects of cycling on running performance in triathletes. Ann Sports Med 1988; 3: 220–5

    Google Scholar 

  102. Boone T, Krieder RB. Bicycle exercise before running: effect on performance. Ann Sports Med 1986; 3: 25–9

    Google Scholar 

  103. Hausswirth C, Bigard AX, Guezennec CY. Relationships between running mechanics and energy cost of running at the end of a triathlon and a marathon. Int J Sports Med 1997; 18 (5): 330–9

    PubMed  CAS  Google Scholar 

  104. Hue O, Le Gallais D, Boussana A. Ventilatory responses during experimental cycle-run transition in triathletes. Med Sci Sports Exerc 1999; 31 (10): 1422–8

    PubMed  CAS  Google Scholar 

  105. Hue O, Le Gallais D, Chollet D, et al. The influence of prior cycling on biomechanical and cardiorespiratory response profiles during running in triathletes. Eur J Appl Physiol 1997; 77: 98–105

    Google Scholar 

  106. O’Toole ML, Douglas PS, Hiller WD. Use of heart rate monitors by endurance athletes: lessons from triathletes. J Sports Med Phys Fitness 1998; 38 (3): 181–7

    PubMed  Google Scholar 

  107. Margaritis I. Factors limiting performance in the triathlon. Can J Appl Physiol 1996; 21 (1): 1–15

    PubMed  CAS  Google Scholar 

  108. Firth M. A look at time trial pacing strategy. J Assoc Br Cycling 1998; 3: 27–33

    Google Scholar 

  109. Wasserman K. Determinants and detection of anaerobic threshold and consequences of exercise above it. Circulation 1987; 76 Suppl.: 29–39

    Google Scholar 

  110. Rusko H, Luhtanen P, Rahkila P, et al. Muscle metabolism, blood lactate and oxygen uptake in steady state exercise at aerobic and anaerobic thresholds. Eur J Appl Physiol 1986; 55 (2): 181–6

    CAS  Google Scholar 

  111. Gollnick PD. Energy metabolism and prolonged exercise. In: Lamb DR, Murray R, editors. Perspectives in exercise science and sports medicine. Volume 1: prolonged exercise. Indianapolis (IN): Benchmark Press, Inc., 1988: 1–36

    Google Scholar 

  112. O’Toole ML. Training for ultraendurance triathlons. Med Sci Sport Exerc 1989; 21 (5): S209–13

    Google Scholar 

  113. O’Toole, ML, Douglas, PS, Hiller WDB, et al. Hematocrits of triathletes: is monitoring useful? Med Sci Sports Exerc 1999; 31 (3): 372–7

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Rhodes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laursen, P.B., Rhodes, E.C. Factors Affecting Performance in an Ultraendurance Triathlon. Sports Med 31, 195–209 (2001). https://doi.org/10.2165/00007256-200131030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200131030-00004

Keywords

Navigation