Skip to main content
Log in

Role of Exercise Training in the Prevention and Treatment of Insulin Resistance and Non-Insulin-Dependent Diabetes Mellitus

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Recent epidemiological studies indicate that individuals who maintain a physically active lifestyle are much less likely to develop impaired glucose tolerance and non-insulin-dependent diabetes mellitus (NIDDM). Moreover, it was found that the protective effect of physical activity was strongest for individuals at highest risk of developing NIDDM. Reducing the risk of insulin resistance and NIDDM by regularly performed exercise is also supported by several aging studies. It has been found that older individuals who vigorously train on a regular basis exhibit a greater glucose tolerance and a lower insulin response to a glucose challenge than sedentary individuals of similar age and weight.

While the evidence is substantial that aerobic exercise training can reduce the risk of impaired glucose tolerance and NIDDM, the evidence that exercise training is beneficial in the treatment of NIDDM is not particularly strong. Many of the early studies investigating the effects of exercise training on NIDDM could not demonstrate improvements in fasting plasma glucose and insulin levels, or glucose tolerance. The adequacy of the training programmes in many of these studies, however, is questionable. More recent studies using prolonged, vigorous exercise-training protocols have produced more favourable results.

There are several important adaptations to exercise training that may be beneficial in the prevention and treatment of insulin resistance, impaired glucose tolerance and NIDDM. An increase in abdominal fat accumulation and loss of muscle mass are highly associated with the development of insulin resistance. Exercise training results in preferential loss of fat from the central regions of the body and should therefore contribute significantly in preventing or alleviating insulin resistance due to its development. Likewise, exercise training can prevent muscle atrophy and stimulate muscle development. Several months of weight training has been found to significantly lower the insulin response to a glucose challenge without affecting glucose tolerance, and to increase the rate of glucose clearance during a euglycaemic clamp.

Muscle glucose uptake is equal to the product of the arteriovenous glucose difference and the rate of glucose delivery or muscle blood flow. While it has been known for many years that insulin will accelerate blood glucose extraction by insulin-sensitive peripheral tissues, recent evidence suggests that it can also acutely vasodilate skeletal muscle and increase muscle blood flow in a dose-dependent manner. A reduced ability of insulin to stimulate muscle blood flow is a characteristic of insulin-resistant obese individuals and individuals with NIDDM. Exercise training, however, has been found to help alleviate this problem, and substantially improve the control of insulin over blood glucose.

Improvements in insulin resistance and glucose tolerance with exercise training are highly related to an increased skeletal muscle insulin action. This increased insulin action is associated with an increase in the insulin-regulatable glucose transporters, GLUT4, and enzymes responsible for the phosphorylation, storage and oxidation of glucose. Changes in muscle morphology may also be important following training. With exercise training there is an increase in the conversion of fast twitch glycolytic IIb fibres to fast twitch oxidative IIa fibres, as well as an increase in capillary density. IIa fibres have a greater capillary density and are more insulin-sensitive and -responsive than IIb fibres. Evidence has been provided that morphological changes in muscle, particularly the capillary density of the muscle, are associated with changes in fasting insulin levels and glucose tolerance. Furthermore, significant correlations between glucose clearance, muscle capillary density and fibre type have been found in humans during a euglycaemic clamp.

Exercise training may also improve control over hepatic glucose production by increasing the control of insulin over blood free fatty acid (FFA) levels. An elevation in FFA levels, which is associated with obesity and NIDDM, stimulates hepatic gluconeogenesis which in turn stimulates hepatic glucose production. An increase in blood FFA levels also inhibits skeletal muscle uptake and storage. Therefore, an increase in control over blood FFA levels would serve to increase peripheral glucose clearance as well as reduce hepatic glucose production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baron AD, Brechtel G, Wallace P, et al. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol 1988; 255 (6 Pt 1): E769–E774

    PubMed  CAS  Google Scholar 

  2. DeFronzo RA, Jacot E, Jequir E, et al. The effect of insulin on the disposal of intravenous glucose. Diabetes 1981; 30: 1000–7

    PubMed  CAS  Google Scholar 

  3. Katz LD, Glickman MG, Rapoport S, et al. Splanchnic and peripheral disposal of oral glucose in man. Diabetes 1983; 32: 675–9

    Article  PubMed  CAS  Google Scholar 

  4. Kahn CR. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism 1978; 27Suppl. 2: 1893–902

    Article  PubMed  CAS  Google Scholar 

  5. National Diabetes Data Group. Classification and diagnosis of diabetes and other categories of glucose intolerance. Diabetes 1979; 28: 1039–57

    Google Scholar 

  6. World Health Organization Expert Committee. Second report on diabetes mellitus. Geneva: WHO, 1980. Technical report series no. 646

    Google Scholar 

  7. Everthart J, Knowler WC, Bennett PH. Incidence and risk factors for non-insulin-dependent diabetes. In: Harris MI, Hamman RF, editors. Diabetes in America. Washington, D.C.: National Diabetes Data Group, US Govt Printing Office, 1985. Report no. USDHHS-NIH-85-1468: 1–35

    Google Scholar 

  8. Palumbo PJ, Elveback LR, Chu CP, et al. Diabetes mellitus: incidence, prevalence, survivorship and causes of death in Rochester, Minnesota, 1945–1970. Diabetes 1976; 25: 566–73

    Article  PubMed  CAS  Google Scholar 

  9. Lipman RL, Raskin P, Love T, et al. Glucose intolerance during decreased physical activity in man. Diabetes 1972; 21: 101–7

    PubMed  CAS  Google Scholar 

  10. Myllynen P, Koivisto VA, Nikkila EA. Glucose intolerance and insulin resistance accompany immobilization. Acta Med Scand 1987; 222: 75–81

    Article  PubMed  CAS  Google Scholar 

  11. Misbin RI, Moffa AM, Kappy MS. Insulin binding to monocytes in obese patients treated with carbohydrate restriction and changes in physical activity. J Clin Endocrinol Metab 1983; 56: 273–8

    Article  PubMed  CAS  Google Scholar 

  12. Lipman RL, Schnure JJ, Bradley EM, et al. Impairment of peripheral glucose utilization in normal subjects by prolonged bed rest. J Lab Clin Med 1970; 76: 221–30

    PubMed  CAS  Google Scholar 

  13. Mikines KJ, Richter EA, Dela F, et al. Seven days of bed rest decrease insulin action on glucose uptake in leg and whole body. J Appl Physiol 1991; 70: 1245–54

    PubMed  CAS  Google Scholar 

  14. Dolkas CB, Greenleaf JE. Insulin and glucose responses during bed rest with isotonic and isometric exercise. J Appl Physiol 1977; 43: 1033–8

    PubMed  CAS  Google Scholar 

  15. King H, Zimmet P, Raper L, et al. Risk factors for diabetes in three Pacific populations. Am J Epidemiol 1984; 119: 396–409

    PubMed  CAS  Google Scholar 

  16. Dowse GK, Zimmet PZ, Gareeboo H, et al. Abdominal obesity and physical inactivity are risk factors for NIDDM and impaired glucose tolerance in Indian, Creole, and Chinese Mauritians. Diabetes Care 1991; 14: 271–82

    Article  PubMed  CAS  Google Scholar 

  17. Helmrich SP, Ragland DR, Leung RW, et al. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Eng J Med 1991; 325: 147–52

    Article  CAS  Google Scholar 

  18. Manson JE, Rimm EB, Stampfer MJ, et al. Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet 1991; 338: 774–8

    Article  PubMed  CAS  Google Scholar 

  19. Manson JE, Nathan DM, Krolewski AS, et al. A prospective study of exercise and incidence of diabetes among US male physicians. J Am Med Assoc 1992; 268: 63–7

    Article  CAS  Google Scholar 

  20. Fink RI, Kolterman OG, Griffin J, et al. Mechanisms of insulin resistance in aging. J Clin Invest 1983; 71: 1523–35

    Article  PubMed  CAS  Google Scholar 

  21. Shimokata H, Muller DC, et al. Age as independent determinant of glucose tolerance. Diabetes 1991; 40: 44–51

    Article  PubMed  CAS  Google Scholar 

  22. Zavaroni I, Dall’Aglio E, Braschi F, et al. Effect of age and environmental factors on glucose tolerance and insulin secretion in a worker population. J Am Geriat Soc 1986; 34: 271–5

    PubMed  CAS  Google Scholar 

  23. Seals DR, Hagberg JM, Allen WK, et al. Glucose tolerance in young and older athletes and sedentary men. J Appl Physiol 1984; 56: 1521–5

    PubMed  CAS  Google Scholar 

  24. Yamanouchi K, Nakajima H, Shinozaki T, et al. Effects of daily physical activity on insulin action in the elderly. J Appl Physiol 1992; 73: 2241–5

    PubMed  CAS  Google Scholar 

  25. Rogers MA, King DS, Hagberg JM, et al. Effect of 10 days of inactivity on glucose tolerance in master athletes. J Appl Physiol 1990; 68: 1833–7

    PubMed  CAS  Google Scholar 

  26. Davidson PC, Shane SR, Albrink JM. Decreased glucose tolerance following a physical conditioning program. Circulation 1966; 33: 7–11

    Article  Google Scholar 

  27. Hartley LH, Mason JW, Hogan RP, et al. Multiple hormone responses to prolonged exercise in relation to physical training. J Appl Physiol 1972; 33: 607–10

    PubMed  CAS  Google Scholar 

  28. Heath GW, Gavin JR III, Hinderliter JM, et al. Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. J Appl Physiol 1983; 55: 512–7

    PubMed  CAS  Google Scholar 

  29. LeBlanc J, Nadeau A, Richard R, et al. Studies on the sparing effect of exercise on insulin requirements in human subjects. Metabolism 1981; 30: 1119–24

    Article  PubMed  CAS  Google Scholar 

  30. Lohman D, Liebold F, Heilman W, et al. Diminished insulin response in highly trained athletes. Metabolism 1978; 27: 521–4

    Article  Google Scholar 

  31. Rodnick KJ, Haskell WL, Swislocki ALM, et al. Improved insulin action in muscle, liver, and adipose tissue in physically trained human subjects. Am J Physiol 1987; 253: E489–E495

    PubMed  CAS  Google Scholar 

  32. Cüppers HJ, Erdmann D, Schubert H, et al. Glucose tolerance, serum insulin, serum lipids in athletes. In: Berger M, Christacopoulus P, Wahren J, editors. Diabetes and exercise. Bern: Han Huber, 1982: 115–65

    Google Scholar 

  33. Miller WJ, Sherman WM, Ivy JL. Effect of strength training on glucose tolerance and post-glucose insulin response. Med Sci Sports Exerc 1984; 16: 539–43

    PubMed  CAS  Google Scholar 

  34. Dela F, Mikines KJ, Von Linstow M, et al. Effect of training on insulin-mediated glucose uptake in human muscle. Am J Physiol 1992; 263 (6 Pt 1): E1134–E1143

    PubMed  CAS  Google Scholar 

  35. King DS, Dalsky GP, Staten MA, et al. Insulin action and secretion in endurance-trained and untrained humans. J Appl Physiol 1987; 63: 2247–52

    PubMed  CAS  Google Scholar 

  36. King DS, Dalsky GP, Clutter WE, et al. Effects of exercise and lack of exercise on insulin sensitivity and responsiveness. J Appl Physiol 1988; 64: 1942–6

    PubMed  CAS  Google Scholar 

  37. Mikines KJ, Sonne B, Farrell PA, et al. Effect of training on the dose-response relationship for insulin action in men. J Appl Physiol 1989; 66: 695–703

    PubMed  CAS  Google Scholar 

  38. Mikines KJ, Sonne B, Tronier B, et al. Effects of acute exercise and detraining on insulin action in trained men. J Appl Physiol 1989; 66: 704–11

    Article  PubMed  CAS  Google Scholar 

  39. Kahn SE, Larson VG, Beard JC, et al. Effect of exercise on insulin action, glucose tolerance, and insulin secretion in aging. Am J Physiol 1990; 258 (6 Pt 1): E397–E943

    Google Scholar 

  40. King DS, Staten MA, Kohrt WM, et al. Insulin secretory capacity in endurance- trained and untrained young men. Am J Physiol 1990; 259 (2 Pt 1): E155–E161

    PubMed  CAS  Google Scholar 

  41. Mikines KJ, Sonne B, Tronier B, et al. Effects of training and detraining on dose-response relationship between glucose and insulin secretion. Am J Physiol 1989; 256 (5 Pt 1): E588–E596

    PubMed  CAS  Google Scholar 

  42. Holloszy JO, Schultz J, Kusnierkiewicz J, et al. Effects of exercise on glucose tolerance and insulin resistance. Acta Med Scand Suppl 1986; 711: 55–65

    PubMed  CAS  Google Scholar 

  43. Hughes VA, Fiatarone MA, Fielding RA, et al. Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Physiol 1993; 264 (6 Pt 1): E855–E862

    PubMed  CAS  Google Scholar 

  44. Dela F, Larsen JJ, Mikines KJ, et al. Insulin-stimulated muscle glucose clearance in patients with NIDDM. Diabetes 1995; 44: 1010–20

    Article  PubMed  CAS  Google Scholar 

  45. Reitman JS, Vasquez B, Klimes I, et al. Improvement of glucose homeostasis after exercise-training in non-insulin-dependent diabetes. Diabetes Care 1984; 7: 434–41

    Article  PubMed  CAS  Google Scholar 

  46. DeFronzo RA. Glucose intolerance and aging: evidence for tissue insensitivity to insulin. Diabetes 1979; 28: 1095–101

    PubMed  CAS  Google Scholar 

  47. Seals DR, Hagberg JM, Hurley BF, et al. Endurance training in older men and women 1. Cardiovascular responses to exercise. J Appl Physiol 1984; 57: 1024–9

    PubMed  CAS  Google Scholar 

  48. Kirwan JP, Kohrt WM, Wojta DM, et al. Endurance exercise training reduces glucose-stimulated insulin levels in 60- to 70-yr-old men and women. J Gerontol 1993; 48(3): M84–M90

    PubMed  CAS  Google Scholar 

  49. Ruderman NB, Granda OP, Johansen K. The effect of physical training on glucose tolerance and plasma lipids in maturity onset diabetes. Diabetes 1979; 28: 89–92

    PubMed  Google Scholar 

  50. Saltin B, Lindgarde F, Houston M, et al. Physical training and glucose tolerance in middle-aged men with clinical diabetes. Diabetes 1979; 28: 30–2

    PubMed  Google Scholar 

  51. Holloszy JO, Narahara HT. Studies of tissue permeability, X: changes in permeability to 3-methylglucose associated with contraction of isolated frog muscles. J Biol Chem 1965; 240: 3492–500

    Google Scholar 

  52. Wallberg-Henriksson H, Holloszy JO. Contractile activity increases glucose uptake by muscle in severely diabetic rats. J Appl Physiol 1984; 57: 1045–9

    PubMed  CAS  Google Scholar 

  53. Cartee GD, Young DA, Sleeper MD, et al. Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Am J Physiol 1989; 256 (4 Pt 1): E494–9

    PubMed  CAS  Google Scholar 

  54. Garetto LP, Richter EA, Goodman MN, et al. Enhanced muscle glucose metabolism after exercise in the rat: the two phases. Am J Physiol 1984; 246 (6 Pt 1): E471–5

    PubMed  CAS  Google Scholar 

  55. Bjömtorp P. Metabolic implications of body fat distribution. Diabetes Care 1991; 14: 1132–43

    Article  Google Scholar 

  56. Kohrt WM, Kirwan JP, Staten MA, et al. Insulin resistance in aging is related to abdominal obesity. Diabetes 1993; 42: 273–81

    Article  PubMed  CAS  Google Scholar 

  57. Després J-P, Nadeau A, Bouchard C. Physical training and changes in regional adipose tissue distribution. Acta Med Scand Suppl 1988; 723: 205–12

    PubMed  Google Scholar 

  58. Kohrt WM, Malley MT, Dalsky GP, et al. Body composition of healthy sedentary and trained, young and older men and women. Med Sci Sports Exerc 1992; 24: 832–7

    PubMed  CAS  Google Scholar 

  59. Dengel DR, Pratley RE, Hagberg JM, et al. Distinct effects of aerobic exercise training and weight loss on glucose homeostasis in obese sedentary men. J Appl Physiol 1996; 81: 318–25

    PubMed  CAS  Google Scholar 

  60. Craig BW, Everhart J, Brown R. The influence of high-resistance training on glucose tolerance in young and elderly subjects. Mech Ageing Dev 1989; 49: 147–57

    Article  PubMed  CAS  Google Scholar 

  61. Stephens JM, Pekala PH. Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J Biol Chem 1991; 266: 21839–45

    PubMed  CAS  Google Scholar 

  62. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor a: a key component of the obesity-diabetes link. Diabetes 1994; 43: 1271–8

    Article  PubMed  CAS  Google Scholar 

  63. Fluckey JD, Hickey MS, Brambrink JK, et al. Effects of resistance exercise on glucose tolerance in normal and glucose-intolerant subjects. J Appl Physiol 1994; 77: 1087–92

    PubMed  CAS  Google Scholar 

  64. Torgan CE, Jr Brozinick JT, Bank EA, et al. Exercise training and clenbuterol reduce insulin resistance of obese Zucker rats. Am J Physiol 1993; 264 (3 Pt 1): E373–E379

    PubMed  CAS  Google Scholar 

  65. Edelman SV, Laakso M, Wallace P, et al. Kinetics of insulin-mediated and non-insulin-mediated glucose uptake in humans. Diabetes 1990; 39: 955–64

    Article  PubMed  CAS  Google Scholar 

  66. Laakso M, Edelman SV, Brechtel G, et al. Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes 1992; 41: 1076–83

    Article  PubMed  CAS  Google Scholar 

  67. Laakso M, Edelman SV, Olefsky JM, et al. Kinetics of in vivo muscle insulin-mediated glucose uptake in human obesity. Diabetes 1990; 39: 965–74

    Article  PubMed  CAS  Google Scholar 

  68. Cleroux J, Koname N, Nadeau A, et al. After-effects of exercise on regional and systemic hemodynamics in hypertension. Hypertension 1992; 19: 183–91

    Article  PubMed  CAS  Google Scholar 

  69. Gilders RM, Dudley GA. Endurance exercise training and treatment of hypertension. Sports Med 1992; 13(2): 71–7

    Article  PubMed  CAS  Google Scholar 

  70. Utriainen T, Holmäng A, Björntorp P, et al. Physical fitness, muscle morphology, and insulin-stimulated limb blood flow in normal subjects. Am J Physiol 1996; 270: E905–E911

    PubMed  CAS  Google Scholar 

  71. Kono T, Barham FW. The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin studies with intact and trypsin-treated fat cells. J Biol Chem 1971; 246: 6210–16

    PubMed  CAS  Google Scholar 

  72. LeMarchand-Brustel Y, Jeanrenaud B, Freychet P. Insulin binding and effects in isolated soleus muscles of lean and obese mice. Am J Physiol 1978 Apr; 234: E348–58

    CAS  Google Scholar 

  73. Olefsky JM. The insulin receptor: Its role in insulin resistance in obesity and diabetes. Diabetes 1976; 25: 1154–64

    PubMed  CAS  Google Scholar 

  74. Olefsky JM, Reaven GM. Decreased insulin binding to lymphocytes from diabetic patients. J Clin Invest 1974; 54: 1323–8

    Article  PubMed  CAS  Google Scholar 

  75. Crettaz M, Prentki M, Zaninettie D, et al. Insulin resistance in soleus muscle from obese Zucker rats: involvement of several defective sites. Biochem J 1980; 186: 525–34

    PubMed  CAS  Google Scholar 

  76. Caro JF, Sinha MK, Raju SM, et al. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest 1987; 79: 1330–7

    Article  PubMed  CAS  Google Scholar 

  77. LeBlanc J, Nadeau M, Bonlay M, et al. Effects of physical training and adiposity on glucose metabolism and 125I-insulin binding. J Appl Physiol 1979; 46: 235–9

    PubMed  CAS  Google Scholar 

  78. Burstein R, Polyehronakos C, Toews CJ, et al. Acute reversal of the enhanced insulin action in trained athletes: association with insulin receptor changes. Diabetes 1985; 34: 756–60

    Article  PubMed  CAS  Google Scholar 

  79. Pederson O, Beck-Nielsen H, Heding L. Increased insulin receptors after exercise in patients with insulin-dependent diabetes mellitus. N Eng J Med 1980; 302: 886–92

    Article  Google Scholar 

  80. Craig BW, Hammons GT, Garthwaite SM, et al. Adaptations of fat cells to exercise: response of glucose uptake and oxidation to insulin. J Appl Physiol 1981; 51: 1500–6

    PubMed  CAS  Google Scholar 

  81. Koivisto VA, Yki-Järvinen H. Effect of exercise on insulin binding and glucose transport in adipocytes of normal humans. J Appl Physiol 1987; 63: 1319–23

    PubMed  CAS  Google Scholar 

  82. Dohm GL, Sinha MK, Caro JF. Insulin receptor binding and protein kinase activity in muscles of trained rats. Am J Physiol 1987; 252 (2 Pt 1): E170–E175

    PubMed  CAS  Google Scholar 

  83. Bonen A, Tan MH, Clune P, et al. Chronic exercise increases insulin binding in muscles but not liver. Am J Physiol 1986; 251 (2 Pt 1): E196–E202

    PubMed  CAS  Google Scholar 

  84. Dela F, Handberg A, Mikines KJ, et al. GLUT4 and insulin receptor binding and kinase activity in trained human muscle. J Physiol 1993; 469: 615–24

    PubMed  CAS  Google Scholar 

  85. Hirshman MF, Goodyear LJ, Wardzala LJ, et al. Identification of an intracellular pool of glucose transporters from basal and insulin-stimulated rat skeletal muscle. J Biol Chem 1990; 265: 987–91

    PubMed  CAS  Google Scholar 

  86. Bell GI, Kayano T, Buse JB, et al. Molecular biology of mammalian glucose transporters. Diabetes Care 1990; 13: 198–208

    Article  PubMed  CAS  Google Scholar 

  87. Klip A, Paquet MR. Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care 1990; 13: 228–43

    Article  PubMed  CAS  Google Scholar 

  88. Henriksen EJ, Bourney RE, Rodnick KJ, et al. Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. Am J Physiol 1990; 259 (4 Pt 1): E593–8

    PubMed  CAS  Google Scholar 

  89. Kern M, Wells JA, Stephens JM, et al. Insulin responsiveness in skeletal muscle is determined by glucose transporter (GLUT4) protein level. Biochem J 1990; 270: 397–400

    PubMed  CAS  Google Scholar 

  90. Ploug T, Stallknecht BM, Pedersen O, et al. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am J Physiol 1990; 259 (6 Pt 1): E778–86

    PubMed  CAS  Google Scholar 

  91. Banks EA, Jr Brozinick JT, Yaspelkis BB III, et al. Muscle glucose transport, GLUT-4 content, and degree of exercise training in obese Zucker rats. Am J Physiol 1992; 263 (5 Pt 1): E1010–E1015

    PubMed  CAS  Google Scholar 

  92. Phillips SM, Han XX, Green HJ, et al. Increments in skeletal muscle GLUT-1 and GLUT-4 after endurance training in humans. Am J Physiol 1996; 270 (3 Pt 1): E451–E462

    Google Scholar 

  93. Houmard JA, Shinebarger MH, Dolan PL, et al. Exercise training increases GLUT-4 protein concentration in previously sedentary middle-aged men. Am J Physiol 1993; 264 (6 Pt 1): E896–E901

    PubMed  CAS  Google Scholar 

  94. Dela F, Ploug T, Handberg A, et al. Physical training increases muscle GLUT4 protein and mRNA in patients with NIDDM. Diabetes 1994; 43: 862–5

    Article  PubMed  CAS  Google Scholar 

  95. Goodyear LJ, Hirshman MF, Valyou PM, et al. Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training. Diabetes 1992; 41: 1091–9

    Article  PubMed  CAS  Google Scholar 

  96. Brozinick JTJr, Etgen GJ Jr, YaspelkisIII BB, et al. Effects of exercise training on muscle GLUT-4 protein content and translocation in obese Zucker rats. Am J Physiol 1993; 265 (3 Pt 1): E419–E427

    PubMed  CAS  Google Scholar 

  97. Hardin DS, Azzarelli B, Edwards J, et al. Mechanisms of enhanced insulin sensitivity in endurance-trained athletes: effects on blood flow and differential expression of GLUT4 in skeletal muscles. J Clin Endocrinol Met 1995; 80: 2437–46

    Article  CAS  Google Scholar 

  98. Ebeling P, Bourey R, Koranyi L, et al. Mechanism of enhanced insulin sensitivity in athletes. Increased blood flow, muscle glucose transport protein (GLUT4) concentration, and glycogen synthase activity. J Clin Invest 1993; 92: 1623–31

    Article  PubMed  CAS  Google Scholar 

  99. Garvey WT, Maianu L, Hancock JA, et al. Gene expression of GLUT4 in skeletal muscle from insulin-resistant patients with obesity, IGT, GDM, and NIDDM. Diabetes 1992; 41: 465–75

    Article  PubMed  CAS  Google Scholar 

  100. Lund S, Vestergaad H, Andersen PH, et al. GLUT-4 content in plasma membrane of muscle from patients with non-insulin-dependent diabetes mellitus. Am J Physiol 1993; 265 (6 Pt 1): E889–E897

    PubMed  CAS  Google Scholar 

  101. Ivy JL, Holloszy JO. Persistent increase in glucose uptake by rat skeletal muscle following exercise. Am J Physiol 1981; 241(5): C200–C203

    PubMed  CAS  Google Scholar 

  102. Lillioja S, Matt DM, Zawadzki JK, et al. Glucose storage is a major determinant of in vivo ‘insulin resistance’ in subjects with normal glucose tolerance. J Clin Endocrinol Met 1986; 62: 922–7

    Article  CAS  Google Scholar 

  103. Kelley DE, Mokan M, Mandarino LJ. Intracellular defects in glucose metabolism in obese patients with NIDDM. Diabetes 1992; 41: 698–706

    Article  PubMed  CAS  Google Scholar 

  104. Schalin-Jäntti C, Härkönen M, Groop LC. Impaired activation of glycogen synthase in people at increased risk for developing NIDDM. Diabetes 1992; 41: 598–604

    Article  PubMed  Google Scholar 

  105. Holloszy JO. Adaptation of skeletal muscle to endurance exercise. Med Sci Sports 1975; 7: 155–64

    PubMed  CAS  Google Scholar 

  106. Saltin B, Henriksson J, Nygaard E, et al. Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Ann NY Acad Sci 1977; 301: 3–29

    Article  PubMed  CAS  Google Scholar 

  107. Ivy JL, Jr Brozinick JT, Torgan CE, et al. Skeletal muscle glucose transport in obese Zucker rats after exercise training. J Appl Physiol 1989; 66: 2635–41

    PubMed  CAS  Google Scholar 

  108. James DE, Kraegen EW, Chirholm DJ. Effects of exercise training on in vivo insulin action in individual tissues of the rat. J Clin Invest 19985; 76: 657–62

  109. Richter EA, Garetto LP, Goodman MN, et al. Muscle glucose metabolism following exercise in the rat. Increased insulin sensitivity. J Clin Invest 1982; 69: 785–93

    Article  PubMed  CAS  Google Scholar 

  110. Holm G, Krotkiewski M. Potential importance of the muscles for the development of insulin resistance in obesity. Acta Med Scand Suppl 1988; 723: 95–101

    PubMed  CAS  Google Scholar 

  111. Krotkiewski M, Bylund-Fallenius AC, Holm J, et al. Relationship between muscle morphology and metabolism in obese women: the effects of long-term physical training. Euro J Clin Invest 1983; 13: 5–12

    Article  CAS  Google Scholar 

  112. Lillioja S, Young AA, Cutler CL, et al. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest 1987; 80: 415–24

    Article  PubMed  CAS  Google Scholar 

  113. Marin P, Andersson B, Krotkiewski M, et al. Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care 1994; 17: 382–6

    Article  PubMed  CAS  Google Scholar 

  114. Hickey MS, Carey JO, Azevedo JL, et al. Skeletal muscle fiber composition is related to adiposity and in vitro glucose transport rate in humans. Am J Physiol 1995; 268 (3 Pt 1): E453–457

    PubMed  CAS  Google Scholar 

  115. Krotkiewski M, Björntorp P. Muscle tissue in obesity with different distribution of adipose tissue. Effects of physical training. Int J Obesity 1986; 10: 331–41

    CAS  Google Scholar 

  116. Biermann EL, Dole VP, Roberts TN. N abnormality of nonesterified fatty acid metabolism in diabetes mellitus. Diabetes 1957; 6: 475–9

    Google Scholar 

  117. Munkner C. Fasting concentrations of non-esterified fatty acids in diabetic and non-diabetic plasma and diurnal variations in normal subjects. Scand J Clin Lab Invest 1959; 11: 388–93

    Article  PubMed  CAS  Google Scholar 

  118. Golay A, Swislocki AM, Chen Y-DI, et al. Relationships between plasma-free fatty acid concentration, endogenous glucose production, and fasting hyperglycemia in normal and non-insulin-dependent diabetic individuals. Metabolism 1987; 36: 692–6

    Article  PubMed  CAS  Google Scholar 

  119. Williamson JR, browning T, Scholz R. Control mechanisms of gluconeogenesis and ketogenesis, 1: effects of oleate on gluconeogenesis in perfused rat liver. J Biol Chem 1969; 244: 4607–16

    PubMed  CAS  Google Scholar 

  120. Boden G, Jadali F, White J, et al. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 1991; 88: 960–6

    Article  PubMed  CAS  Google Scholar 

  121. Piatti PM, Monti LD, Pacchioni M, et al. Forearm insulin- and non-insulin-mediated glucose uptake and muscle metabolism in man: role of free fatty acids and blood glucose levels. Metabolism 1991; 40: 926–33

    Article  PubMed  CAS  Google Scholar 

  122. Nestel PJ, Ishikawa T, Goldrick RB. Diminished plasma free fatty acid clearance in obese subjects. Metabolism 1978; 27: 589–97

    Article  PubMed  CAS  Google Scholar 

  123. Craig BW, Thompson K, Holloszy JO. Effects of stopping training on size and response to insulin of fat cells in female rats. J Appl Physiol 1983; 54: 571–5

    PubMed  CAS  Google Scholar 

  124. Schneider SH, Amorosa LF, Kachadorian AK, et al. Studies of the mechanisms of improved glucose control during regular exercise in type 2 (non-insulin dependent) diabetes. Diabetologia 1984; 26: 355–60

    Article  PubMed  CAS  Google Scholar 

  125. Cortez MY, Torgan CE, Jr Brozinick JT, et al. Insulin resistance of obese Zucker rats exercise trained at two different intensities. Am J Physiol 1991; 261 (5 Pt 1): E613–E619

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Ivy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivy, J.L. Role of Exercise Training in the Prevention and Treatment of Insulin Resistance and Non-Insulin-Dependent Diabetes Mellitus. Sports Med 24, 321–336 (1997). https://doi.org/10.2165/00007256-199724050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199724050-00004

Keywords

Navigation