Skip to main content

Advertisement

Log in

Exercise Performance of Lower-Extremity Amputees

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

A comparison of the literature quantifying the energy expended during ambulation of healthy individuals and those with amputation of the lower extremity is difficult as study parameters and methods are inconsistent. However, the energy cost of ambulation is greater for amputees than for nonamputees. Ascending level of amputation appears to be associated with increasing metabolic demand. There appears to be a difference in energy cost of ambulation following different surgical procedures. The literature regarding energy cost of ambulating with different lower-extremity prostheses is equivocal, with the exception of the contoured adducted trochanteric-controlled alignment method (CAT-CAM) socket for above-knee amputees and the new energy-storing (Proteor™) foot for traumatic below-knee amputees, which may decrease energy expenditure during ambulation. Therefore, it is reasonable to recommend that energy cost of ambulation be considered when deciding on the most efficacious surgical procedure, and metabolic efficiency of gait be considered when selecting prostheses most suitable for lower-extremity amputees.

Though limited research is currently available, it appears that training or physical conditioning for the lower-extremity amputee, particularly with cardiopulmonary or vascular insufficiency, may decrease the metabolic cost of ambulation. More research is needed regarding the benefits of aerobic exercise and the safest, most effective exercise regimens for reducing metabolic costs of ambulation in lower-extremity amputees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. McDonald I. Statistical studies of recorded energy expenditure of man. Part II. Expenditure on walking related to weight, sex, age, height, speed, and gradient. Nutr Abstr Rev 1961; 31: 739–62

    Google Scholar 

  2. Saunders JBDCM, Inman VT, Eberhart HD. Major determinants in normal and pathological gait. J Bone Joint Surg Am 1953; 35-A: 543–58

    PubMed  CAS  Google Scholar 

  3. Liberson WT. Biomechanics of gait: method of study. Arch Phys Med Rehabil 1965; 46: 37–48

    PubMed  CAS  Google Scholar 

  4. Cavagna GA, Margaria R. Mechanics of walking. J Appl Physiol 1966; 21: 2714–8

    Google Scholar 

  5. Fisher SV, Gullickson G. Energy cost of ambulation in health and disability: a literature review. Arch Phys Med Rehabil 1978; 59: 124–33

    PubMed  CAS  Google Scholar 

  6. Waters RL, Perry J, Antonelli D, et al. Energy cost of walking of amputees: the influence of level of amputation. J Bone Joint Surg Am 1976; 58-A: 42–6

    Google Scholar 

  7. Huang CT, Jackson JR, Moore NB, et al. Amputation: energy cost of ambulation. Arch Phys Med Rehabil 1979; 60: 18–24

    PubMed  CAS  Google Scholar 

  8. Gailey RS, Lawrence D, Burditt C, et al. The CAT-CAM socket and quadrilateral socket: a comparison of energy cost during ambulation. Prosthet Orthot Int 1993; 17: 95–100

    PubMed  CAS  Google Scholar 

  9. Pinzur MS, Gold J, Schwartz D, et al. Energy demands for walking in dysvascular amputees as related to the level of amputation. Orthopedics 1992; 15(9): 1033–7

    PubMed  CAS  Google Scholar 

  10. Waters RL, Hislop HJ, Perry J, et al. Comparative cost of walking in young and old adults. J Orthop Res 1983; 1: 73–80

    Article  PubMed  CAS  Google Scholar 

  11. Waters RL, Lunsford BR, Perry J, et al. Energy speed relationship of walking: standard tables. J Orthop Res 1988; 6: 215–21

    Article  PubMed  CAS  Google Scholar 

  12. Ganguli S, Bose KS, Datta SR, et al. Biomechanical approach to the functional assessment of the use of crutches for ambulation. Ergonomics 1974; 17(3): 365–74

    Article  PubMed  CAS  Google Scholar 

  13. Dumin JVGA, Passmore R. Energy, work, and leisure. London: Heinemann Educational Books Ltd, 1967: 111–2

    Google Scholar 

  14. Molen NH. Energy/speed relation of below-knee amputees walking on motordriven treadmill. Int Z Angew Physiol 1973; 31: 173–85

    PubMed  CAS  Google Scholar 

  15. Ganguli S, Datta SR, Chatterjee BB, et al. Performance evaluation of an amputee-prosthesis system in below-knee amputees. Ergonomics 1973; 16(6): 797–810

    Article  PubMed  CAS  Google Scholar 

  16. Gonzales EG, Corcoran PJ, Reyes RL. Energy expenditure in below-knee amputees: correlation with stump length. Arch Phys Med Rehabil 1974; 55: 111–118

    Google Scholar 

  17. Lehmann JF, Price R, Boswell-Bessette S, et al. Comprehensive analysis of dynamic elastic response feet: Seattle ankle/lite foot versus SACH foot. Arch Phys Med Rehabil 1993; 74: 853–61

    Article  PubMed  CAS  Google Scholar 

  18. Lane JM, Kroll MA, Rossbach PG. New advances and concepts in amputee management after treatment for bone and soft-tissue sarcomas. Clin Orthop 1990; 256: 22–8

    PubMed  Google Scholar 

  19. Herbert LM, Engsberg JR, Tedford KG, et al. A comparison of oxygen consumption during walking between children with and without below-knee amputations. Phys Ther 1994; 74: 943–50

    PubMed  CAS  Google Scholar 

  20. Inman VT, Barnes GH, Levy SW, et al. Medical problems of amputees. Calif Med 1961; 94: 132–8

    PubMed  CAS  Google Scholar 

  21. James U. Oxygen uptake and heart rate during prosthetic walking in healthy male unilateral above-knee amputees. Scand J Rehabil Med 1973; 5: 71–80

    PubMed  CAS  Google Scholar 

  22. Traugh GH, Corcoran PJ, Reyes RL. Energy expenditure of ambulation in patients with above-knee amputations. Arch Phys Med Rehabil 1975; 56: 67–71

    PubMed  CAS  Google Scholar 

  23. Ganguli S, Bose KS, Datta SR, et al. Ergonomics evaluation of above-knee amputee-prosthesis combinations. Ergonomics 1974; 17(2): 199–210

    Article  PubMed  CAS  Google Scholar 

  24. Nowroozi F, Salvanelli ML, Gerber LH. Energy expenditure in hip disarticulation and hemipelvectomy amputees. Arch Phys Med Rehabil 1983; 64: 300–3

    PubMed  CAS  Google Scholar 

  25. Jaegers SMHJ, Vos LDW, Rispens P, et al. The relationship between comfortable and most metabolically efficient walking speed in persons with unilateral above-knee amputation. Arch Phys Med Rehabil 1993; 74: 521–5

    Article  PubMed  CAS  Google Scholar 

  26. Czerniecki JM, Gitter A, Weaver K. Effect of alterations in prosthetic shank mass on the metabolic costs of ambulation in above-knee amputees. Am J Phys Med Rehabil 1994; 73: 348–52

    Article  PubMed  CAS  Google Scholar 

  27. Cammisa FP, Glasser DB, Otis JC, et al. The Van Nes tibial rotationplasty. J Bone Joint Surg Am 1990; 72-A: 1541–7

    Google Scholar 

  28. The C.V. Mosby Co. Mosby’s medical dictionary. 2nd rev. St Louis, Missouri: The C.V. Mosby Co., 1987

  29. Otis JC, Lane JM, Kroll MA. Energy cost during gait in osteosarcoma patients after resection and knee replacement and after above-the-knee amputation. J Bone Joint Surg Am 1985; 67-A: 606–11

    Google Scholar 

  30. Harris IE, Leff AR, Gitelis S, et al. Function after amputation, arthrodesis, or arthroplasty for tumors about the knee. J Bone Joint Surg Am 1990; 72-A: 1477–85

    Google Scholar 

  31. McClenaghan BA, Krajbich JI, Pirone AM, et al. Comparative assessment of gait after limb-salvage procedures. J Bone Joint Surg Am 1989; 71-A: 1178–82

    Google Scholar 

  32. van der Windt DAWM, Pieterson I, van der Eijken JW, et al. Energy expenditure during walking in subjects with tibial rotationplasty, above-knee amputation, or hip disarticulation. Arch Phys Med Rehabil 1992; 73: 1174–80

    PubMed  Google Scholar 

  33. Isakov E, Susak Z, Becker E. Energy expenditure and cardiac response in aboveknee amputees while using prostheses with open and locked knee mechanisms. Scand J Rehabil Med 1985; 12 Suppl.: 108–11

    CAS  Google Scholar 

  34. Cummings V, March H, Steve L, et al. Energy costs of below knee prostheses using two types of suspension. Arch Phys Med Rehabil 1979; 60: 293–7

    PubMed  CAS  Google Scholar 

  35. Crouse SF, Lessard CS, Rhodes J, et al. Oxygen consumption and cardiac response of short-leg and long-leg prosthetic ambulation in a patient with bilateral above-knee amputation: comparisons with able-bodied men. Arch Phys Med Rehabil 1990; 71: 313–7

    PubMed  CAS  Google Scholar 

  36. Flandry F, Beskin J, Chambers R. The effect of the CAT-CAM above-knee prosthesis on functional rehabilitation. Clin Orthop 1989; 239: 249–62

    PubMed  Google Scholar 

  37. Mitchell CA, Versluis TL. Management of an above-knee amputee with complex medical problems using the CAT-CAM prosthesis. Phys Ther 1990; 70(6): 389–93

    PubMed  CAS  Google Scholar 

  38. Adler JC, Mazzarella N, Puzsier L, Alba A. Treadmill training program for a bilateral below-knee amputee patient with cardiopulmonary disease. Arch Phys Med Rehabil 1987; 68: 858–61

    PubMed  CAS  Google Scholar 

  39. Pitetti KH, Snell PG, Stray-Gundersen J, et al. Aerobic training exercises for individuals who had amputation of the lower limb. J Bone Joint Surg Am 1987; 69-A(6): 914–21

    Google Scholar 

  40. Kavanagh T, Shephard RJ. Can regular sports participation slow the aging process? Data on Masters athletes. Phys Sports Med 1990; 18: 94–9

    Google Scholar 

  41. Kasch FW, Wallace JP, Van Camp SP, et al. A longitudinal study of cardiovascular stability in active men aged 45 to 65 years. Phys Sports Med 1988; 16(1): 117–21

    Google Scholar 

  42. Stegemann J. Exercise physiology: physiological bases of work and sport. In: Skinner JS, editor. Chicago and London: Year Book Medical Publishers Inc., 1981: 312

    Google Scholar 

  43. Rodahl K. The physiology of work. London: Taylor & Francis, 1989: 58

    Google Scholar 

  44. Williamson VC. Amputation of the lower extremity: an overview. Orthop Nursing 1992; 11(2): 55–65

    Article  CAS  Google Scholar 

  45. Bard G, Ralston HJ. Measurement of energy expenditure during ambulation, with special reference to evaluation of assistive devices. Arch Phys Med Rehabil 1959; 40: 415–20

    PubMed  CAS  Google Scholar 

  46. Bobbert AC. Energy expenditure in level and grade walking. J Appl Physiol 1960; 15: 1015–21

    Google Scholar 

  47. Corcoran PJ, Brengelmann GL. Oxygen uptake in normal and handicapped subjects in relation to the speed of walking beside a velocity-controlled cart. Arch Phys Med Rehabil 1970; 51: 78–87

    PubMed  CAS  Google Scholar 

  48. Erdman WJ, Hettinger T, Saez F. Comparative work stress for above-knee amputees using artificial legs or crutches. Am J Phys Med Rehabil 1960; 39: 225–32

    Article  Google Scholar 

  49. Casillas JM, Dulieeu V, Cohen M. Bioenergetic comparison of a new energy-storing foot and SACH foot in traumatic below-knee vascular amputations. Arch Phys Med Rehabil 1995; 76: 39–44

    Article  PubMed  CAS  Google Scholar 

  50. Torburn L, Powers CM, Guiterrez R, et al. Energy expenditure in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. J Rehabil Res Dev 1995; 32(2): 111–9

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, K.H., Meyers, M.C. Exercise Performance of Lower-Extremity Amputees. Sports Med. 20, 207–214 (1995). https://doi.org/10.2165/00007256-199520040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199520040-00001

Keywords

Navigation