Skip to main content

Advertisement

Log in

Effects of Creep and Cyclic Loading on the Mechanical Properties and Failure of Human Achilles Tendons

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The Achilles tendon is one of the most frequently injured tendons in humans, and yet the mechanisms underlying its injury are not well understood. This study examines the ex vivo mechanical behavior of excised human Achilles tendons to elucidate the relationships between mechanical loading and Achilles tendon injury. Eighteen tendons underwent creep testing at constant stresses from 35 to 75 MPa. Another 25 tendons underwent sinusoidal cyclic loading at 1 Hz between a minimum stress of 10 MPa and maximum stresses of 30–80 MPa. For the creep specimens, there was no significant relationship between applied stress and time to failure, but time to failure decreased exponentially with increasing initial strain (strain when target stress is first reached) and decreasing failure strain. For the cyclically loaded specimens, secant modulus decreased and cyclic energy dissipation increased over time. Time and cycles to failure decreased exponentially with increasing applied stress, increasing initial strain (peak strain from first loading cycle), and decreasing failure strain. For both creep and cyclic loading, initial strain was the best predictor of time or cycles to failure, supporting the hypothesis that strain is the primary mechanical parameter governing tendon damage accumulation and injury. The cyclically loaded specimens failed faster than would be expected if only time-dependent damage occurred, suggesting that repetitive loading also contributes to Achilles tendon injuries. © 2003 Biomedical Engineering Society.

PAC2003: 8719Rr

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beynnon, B., J. G. Howe, M. H. Pope, R. J. Johnson, and B. C. Fleming. The measurement of anterior cruciate ligament strainInt. Orthop.16:1–12, 1992.

    Google Scholar 

  2. Caler, W. E., and D. R. Carter. Bone creep-fatigue damage accumulation. J. Biomech.22:625–635, 1989.

    Google Scholar 

  3. Carter, D. R., and W. E. Caler. A cumulative damage model for bone fracture. J. Orthop. Res.3:84–90, 1985.

    Google Scholar 

  4. Chimich, D., N. Shrive, C. Frank, L. Marchuk, and R. Bray. Water content alters viscoelastic behaviour of the normal adolescent rabbit medial collateral ligament. J. Biomech.25:831–837, 1992.

    Google Scholar 

  5. Galloway, M. T., P. Jokl, and O. W. Dayton. Achilles tendon overuse injuries. Clin. Sports Med.11:771–782, 1992.

    Google Scholar 

  6. Jarvinen, M. Epidemiology of tendon injuries in sports. Clin. Sports Med.11:493–504, 1992.

    Google Scholar 

  7. Józsa, L., and P. Kannus. Overuse injuries of tendons. In: Human Tendons. Anatomy, Physiology, and Pathology, edited by L. Józsa, and P. Kannus. Champaign, IL: Human Kinetics, 1997, pp. 164–253.

    Google Scholar 

  8. Józsa, L., and P. Kannus. Spontaneous rupture of tendons. In:Human Tendons. Anatomy, Physiology, and Pathology, edited by L. Józsa and P. Kannus. Champaign, IL: Human Kinetics, 1997, pp. 254–325.

    Google Scholar 

  9. Kannus, P., and L. Jozsa. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J. Bone Jt. Surg., Am.73:1507–1525, 1991.

    Google Scholar 

  10. Ker, R. F., R. M. Alexander, and M. B. Bennet. Why are mammalian tendons so thick?J. Zool.216:309–324, 1988.

    Google Scholar 

  11. Komi, P. V., S. Fukashiro, and M. Jarvinen. Biomechanical loading of achilles tendon during normal locomotion. Clin. Sports Med.11:521–531, 1992.

    Google Scholar 

  12. Maganaris, C. N., and J. P. Paul. human tendon mechanical properties. J. Physiol. (London)521:307–313, 1999.

    Google Scholar 

  13. Magnusson, S. P., P. Aagaard, P. Dyhre-Poulsen, and M. Kjaer. Load–displacement properties of the human triceps surae aponeurosisJ. Physiol. (London)531:277–288, 2001.

    Google Scholar 

  14. Muramatsu, T., T. Muraoka, D. Takeshita, Y. Kawakami, Y. Hirano, and T. Fukunaga. Mechanical properties of tendon and aponeurosis of human gastrocnemius muscleJ. Appl. Physiol.90:1671–1678, 2001.

    Google Scholar 

  15. Pattin, C. A., W. E. Caler, and D. R. Carter. Cyclic mechanical property degradation during fatigue loading of cortical bone. J. Biomech.29:69–79, 1996.

    Google Scholar 

  16. Provenzano, P., K. Hayashi, R. Lakes, and R. Vanderby, Jr.A structural and cellular evaluation of sub-failure damage in ligament. Trans. Orthopaedic Res. Soc.26:22–22, 2001.

    Google Scholar 

  17. Schechtman, H., and D. L. Bader. fatigue of human tendons. J. Biomech.30:829–835, 1997.

    Google Scholar 

  18. Schechtman, H., and D. L. Bader. Fatigue damage of human tendons. J. Biomech.35:347–353, 2002.

    Google Scholar 

  19. Smith, R. K., R. Jones, and P. M. Webbon. The cross-sectional areas of normal equine digital flexor tendons determined ultrasonographically. Equine Vet. J.26:460–465, 1994.

    Google Scholar 

  20. Wang, X. T., and R. F. Ker. Creep rupture of wallaby tail tendons. J. Exp. Biol.198:831–845, 1995.

    Google Scholar 

  21. Wang, X. T., R. F. Ker, and R. M. Alexander. Fatigue rupture of wallaby tail tendons. J. Exp. Biol.198:847–852, 1995.

    Google Scholar 

  22. Woo, S. L., M. A. Gomez, Y. Seguchi, C. M. Endo, and W. H. Akeson. Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J. Orthop. Res.1:22–29, 1983.

    Google Scholar 

  23. Woo, S. L., J. A. Weiss, M. A. Gomez, and D. A. Hawkins. Measurement of changes in ligament tension with knee motion and skeletal maturation. J. Biomech. Eng.112:46–51, 1990.

    Google Scholar 

  24. Wren, T. A., G. S. Beaupre, and D. R. Carter. A model for loading-dependent growth, development, and adaptation of tendons and ligaments. J. Biomech.31:107–114, 1998.

    Google Scholar 

  25. Wren, T. A., G. S. Beaupre, and D. R. Carter. Tendon and ligament adaptation to exercise, immobilization, and remobilization. J. Rehabil. Res. Dev.37:217–224, 2000.

    Google Scholar 

  26. Wren, T. A., S. A. Yerby, G. S. Beaupre, and D. R. Carter. Mechanical properties of the human achilles tendon. Clin. Biomech. (Bristol, Avon)16:245–251, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wren, T.A.L., Lindsey, D.P., Beaupré, G.S. et al. Effects of Creep and Cyclic Loading on the Mechanical Properties and Failure of Human Achilles Tendons. Annals of Biomedical Engineering 31, 710–717 (2003). https://doi.org/10.1114/1.1569267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1569267

Navigation