Semin Liver Dis 2013; 33(04): 380-388
DOI: 10.1055/s-0033-1358519
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Lipoprotein Metabolism, Dyslipidemia, and Nonalcoholic Fatty Liver Disease

David E. Cohen
1   Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
,
Edward A. Fisher
2   Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
12 November 2013 (online)

Abstract

Cardiovascular disease represents the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD). Patients with NAFLD exhibit an atherogenic dyslipidemia that is characterized by an increased plasma concentration of triglycerides, reduced concentration of high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) particles that are smaller and more dense than normal. The pathogenesis of NAFLD-associated atherogenic dyslipidemia is multifaceted, but many aspects are attributable to manifestations of insulin resistance. Here the authors review the structure, function, and metabolism of lipoproteins, which are macromolecular particles of lipids and proteins that transport otherwise insoluble triglyceride and cholesterol molecules within the plasma. They provide a current explanation of the metabolic perturbations that are observed in the setting of insulin resistance. An improved understanding of the pathophysiology of atherogenic dyslipidemia would be expected to guide therapies aimed at reducing morbidity and mortality in patients with NAFLD.

 
  • References

  • 1 Ekstedt M, Franzén LE, Mathiesen UL , et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006; 44 (4) 865-873
  • 2 Vanwagner LB, Bhave M, Te HS, Feinglass J, Alvarez L, Rinella ME. Patients transplanted for nonalcoholic steatohepatitis are at increased risk for postoperative cardiovascular events. Hepatology 2012; 56 (5) 1741-1750
  • 3 Kim D, Kim WR, Kim HJ, Therneau TM. Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology 2013; 57 (4) 1357-1365
  • 4 Chatrath H, Vuppalanchi R, Chalasani N. Dyslipidemia in patients with nonalcoholic fatty liver disease. Semin Liver Dis 2012; 32 (1) 22-29
  • 5 Treeprasertsuk S, Leverage S, Adams LA, Lindor KD, St Sauver J, Angulo P. The Framingham risk score and heart disease in nonalcoholic fatty liver disease. Liver Int 2012; 32 (6) 945-950
  • 6 Choi SH, Ginsberg HN. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab 2011; 22 (9) 353-363
  • 7 Tilg H, Hotamisligil GS. Nonalcoholic fatty liver disease: cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology 2006; 131 (3) 934-945
  • 8 Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med 2010; 363 (14) 1341-1350
  • 9 Musso G, Cassader M, Gambino R. Diagnostic accuracy of adipose insulin resistance index and visceral adiposity index for progressive liver histology and cardiovascular risk in nonalcoholic fatty liver disease. Hepatology 2012; 56 (2) 788-789
  • 10 Gupte P, Amarapurkar D, Agal S , et al. Non-alcoholic steatohepatitis in type 2 diabetes mellitus. J Gastroenterol Hepatol 2004; 19 (8) 854-858
  • 11 Tolman KG, Fonseca V, Tan MH, Dalpiaz A. Narrative review: hepatobiliary disease in type 2 diabetes mellitus. Ann Intern Med 2004; 141 (12) 946-956
  • 12 Assy N, Kaita K, Mymin D, Levy C, Rosser B, Minuk G. Fatty infiltration of liver in hyperlipidemic patients. Dig Dis Sci 2000; 45 (10) 1929-1934
  • 13 Speliotes EK, Massaro JM, Hoffmann U , et al. Fatty liver is associated with dyslipidemia and dysglycemia independent of visceral fat: the Framingham Heart Study. Hepatology 2010; 51 (6) 1979-1987
  • 14 Lomonaco R, Chen J, Cusi K. An endocrine perspective of nonalcoholic fatty liver disease (NAFLD). Ther Adv Endocrinol Metab 2011; 2 (5) 211-225
  • 15 DeFilippis AP, Blaha MJ, Martin SS , et al. Nonalcoholic fatty liver disease and serum lipoproteins: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2013; 227 (2) 429-436
  • 16 Small DM. The Physical Chemistry of Lipids. From Alkanes to Phospholipids. New York, NY: Plenum Press; 1986
  • 17 Jonas A. Lipoprotein structure. In: Vance DE, Vance JE, , eds. Biochemistry of Lipids, Lipoproteins and Membranes. 4th ed. Amsterdam, The Netherlands: Elsevier; 2002: 483-404
  • 18 Cohen DE. Lipoprotein metabolism and cholesterol balance. In: Arias IM, Alter H, Boyer JL, Cohen DE, Fausto N, Shafritz DA, Wolkoff AW, , eds. The Liver: Biology and Pathobiology. 5th ed. Oxford, UK: Wiley Blackwell; 2009: 271-285
  • 19 Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol Endocrinol Metab 2009; 296 (6) E1183-E1194
  • 20 Rudel LL, Lee RG, Parini P. ACAT2 is a target for treatment of coronary heart disease associated with hypercholesterolemia. Arterioscler Thromb Vasc Biol 2005; 25 (6) 1112-1118
  • 21 Rutledge AC, Su Q, Adeli K. Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assembly. Biochem Cell Biol 2010; 88 (2) 251-267
  • 22 Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem 2002; 277 (20) 17377-17380
  • 23 Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 2003; 44 (1) 22-32
  • 24 Chamberlain JM, O'Dell C, Sparks CE, Sparks JD. Insulin suppression of apolipoprotein B in McArdle RH7777 cells involves increased sortilin 1 interaction and lysosomal targeting. Biochem Biophys Res Commun 2013; 430 (1) 66-71
  • 25 Yao Z, Wang Y. Apolipoprotein C-III and hepatic triglyceride-rich lipoprotein production. Curr Opin Lipidol 2012; 23 (3) 206-212
  • 26 Wetterau JR, Aggerbeck LP, Bouma ME , et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 1992; 258 (5084) 999-1001
  • 27 Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M, Wetterau JR. The role of the microsomal triglyceride transfer protein in abetalipoproteinemia. Annu Rev Nutr 2000; 20: 663-697
  • 28 Cuchel M, Bloedon LT, Szapary PO , et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med 2007; 356 (2) 148-156
  • 29 Goh VJ, Silver DL. The lipid droplet as a potential therapeutic target in NAFLD. Semin Liver Dis 2013; ; In press
  • 30 Romeo S, Kozlitina J, Xing C , et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40 (12) 1461-1465
  • 31 Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332 (6037) 1519-1523
  • 32 Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011; 53 (6) 1883-1894
  • 33 Chamoun Z, Vacca F, Parton RG, Gruenberg J. PNPLA3/adiponutrin functions in lipid droplet formation. Biol Cell 2013; 105 (5) 219-233
  • 34 Li JZ, Huang Y, Karaman R , et al. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J Clin Invest 2012; 122 (11) 4130-4144
  • 35 Pirazzi C, Adiels M, Burza MA , et al. Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. J Hepatol 2012; 57 (6) 1276-1282
  • 36 Tanoli T, Yue P, Yablonskiy D, Schonfeld G. Fatty liver in familial hypobetalipoproteinemia: roles of the APOB defects, intra-abdominal adipose tissue, and insulin sensitivity. J Lipid Res 2004; 45 (5) 941-947
  • 37 McGowan MP, Tardif JC, Ceska R , et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS ONE 2012; 7 (11) e49006
  • 38 Pan M, Cederbaum AI, Zhang YL, Ginsberg HN, Williams KJ, Fisher EA. Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. J Clin Invest 2004; 113 (9) 1277-1287
  • 39 Brodsky JL, Fisher EA. The many intersecting pathways underlying apolipoprotein B secretion and degradation. Trends Endocrinol Metab 2008; 19 (7) 254-259
  • 40 Fisher EA. The degradation of apolipoprotein B100: multiple opportunities to regulate VLDL triglyceride production by different proteolytic pathways. Biochim Biophys Acta 2012; 1821 (5) 778-781
  • 41 Strong A, Ding Q, Edmondson AC , et al. Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism. J Clin Invest 2012; 122 (8) 2807-2816
  • 42 Haas ME, Attie AD, Biddinger SB. The regulation of ApoB metabolism by insulin. Trends Endocrinol Metab 2013; 24 (8) 391-397
  • 43 Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol 2013; 48 (4) 434-441
  • 44 Xu X, So J-S, Park J-G, Lee A-H. Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis 2013; ; In press
  • 45 Uyeda K, Repa JJ. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab 2006; 4 (2) 107-110
  • 46 Sparks CE, Sparks JD. Hepatic steatosis and VLDL hypersecretion. Curr Opin Lipidol 2012; 23 (4) 395-397
  • 47 Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 2008; 320 (5882) 1492-1496
  • 48 Henkel A, Green RM. The unfolded protein response in fatty liver disease. Semin Liver Dis 2013; ; In press
  • 49 Shachter NS. Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr Opin Lipidol 2001; 12 (3) 297-304
  • 50 Fielding PE, Fielding CJ. Dynamics of lipoprotein transport in the human circulatory system. In: Vance DE, Vance JE, , eds. Biochemistry of Lipids, Lipoproteins and Membranes. 4th ed. Amsterdam, The Netherlands: Elsevier; 2002: 527-552
  • 51 Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 2002; 43 (12) 1997-2006
  • 52 Young SG, Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev 2013; 27 (5) 459-484
  • 53 Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 2009; 297 (2) E271-E288
  • 54 Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med (Berl) 2002; 80 (12) 753-769
  • 55 Cohn JS, Patterson BW, Uffelman KD, Davignon J, Steiner G. Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J Clin Endocrinol Metab 2004; 89 (8) 3949-3955
  • 56 Cooper AD. Hepatic uptake of chylomicron remnants. J Lipid Res 1997; 38 (11) 2173-2192
  • 57 Mahley RW, Ji ZS. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 1999; 40 (1) 1-16
  • 58 Mahley RW, Rall Jr SC. Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 2000; 1: 507-537
  • 59 Packard CJ, Shepherd J. Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler Thromb Vasc Biol 1997; 17 (12) 3542-3556
  • 60 Lewis GF, Murdoch S, Uffelman K , et al. Hepatic lipase mRNA, protein, and plasma enzyme activity is increased in the insulin-resistant, fructose-fed Syrian golden hamster and is partially normalized by the insulin sensitizer rosiglitazone. Diabetes 2004; 53 (11) 2893-2900
  • 61 Miksztowicz V, Lucero D, Zago V , et al. Hepatic lipase activity is increased in non-alcoholic fatty liver disease beyond insulin resistance. Diabetes Metab Res Rev 2012; 28 (6) 535-541
  • 62 Lucero D, Zago V, López GI , et al. Does non-alcoholic fatty liver impair alterations of plasma lipoproteins and associated factors in metabolic syndrome?. Clin Chim Acta 2011; 412 (7-8) 587-592
  • 63 Schneider WJ. Lipoprotein receptors. In: Vance DE, , ed. Biochemistry of Lipids, Lipoproteins and Membranes. Amsterdam, The Netherlands: Elsevier; 2002: 553-572
  • 64 Lambert G, Sjouke B, Choque B, Kastelein JJ, Hovingh GK. The PCSK9 decade. J Lipid Res 2012; 53 (12) 2515-2524
  • 65 Jiang ZG, Robson SC, Yao Z. Lipoprotein metabolism in nonalcoholic fatty liver disease. J Biomed Res 2013; 27 (1) 1-13
  • 66 Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232 (4746) 34-47
  • 67 Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol 2009; 29 (4) 431-438
  • 68 Kwon HJ, Abi-Mosleh L, Wang ML , et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 2009; 137 (7) 1213-1224
  • 69 Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109 (9) 1125-1131
  • 70 Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab 2008; 8 (6) 512-521
  • 71 Puri P, Baillie RA, Wiest MM , et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 2007; 46 (4) 1081-1090
  • 72 Min HK, Kapoor A, Fuchs M , et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab 2012; 15 (5) 665-674
  • 73 Cohen DE. Pathogenesis of gallstones. In: Zakim D, Boyer TD, , eds. Hepatology: A Textbook of Liver Disease. 4 ed. Philadelphia, PA: WB Saunders; 2002: 1713-1743
  • 74 Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 2005; 96 (12) 1221-1232
  • 75 Silver DL, Jiang XC, Arai T, Bruce C, Tall AR. Receptors and lipid transfer proteins in HDL metabolism. Ann N Y Acad Sci 2000; 902: 103-111 , discussion 111–112
  • 76 Glomset JA. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res 1968; 9 (2) 155-167
  • 77 Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2012; 32 (12) 2813-2820
  • 78 Timmins JM, Lee JY, Boudyguina E , et al. Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest 2005; 115 (5) 1333-1342
  • 79 Zannis VI, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med (Berl) 2006; 84 (4) 276-294
  • 80 Blanco-Vaca F, Escolà-Gil JC, Martín-Campos JM, Julve J. Role of apoA-II in lipid metabolism and atherosclerosis: advances in the study of an enigmatic protein. J Lipid Res 2001; 42 (11) 1727-1739
  • 81 Kiss RS, McManus DC, Franklin V , et al. The lipidation by hepatocytes of human apolipoprotein A-I occurs by both ABCA1-dependent and -independent pathways. J Biol Chem 2003; 278 (12) 10119-10127
  • 82 Webb NR, Cai L, Ziemba KS , et al. The fate of HDL particles in vivo after SR-BI-mediated selective lipid uptake. J Lipid Res 2002; 43 (11) 1890-1898
  • 83 Rye KA, Barter PJ. Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol 2004; 24 (3) 421-428
  • 84 Yancey PG, Bortnick AE, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Rothblat GH. Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol 2003; 23 (5) 712-719
  • 85 Nonomura K, Arai Y, Mitani H, Abe-Dohmae S, Yokoyama S. Insulin down-regulates specific activity of ATP-binding cassette transporter A1 for high density lipoprotein biogenesis through its specific phosphorylation. Atherosclerosis 2011; 216 (2) 334-341
  • 86 Ng DS. The role of lecithin:cholesterol acyltransferase in the modulation of cardiometabolic risks–a clinical update and emerging insights from animal models. Biochim Biophys Acta 2012; 1821: 654-659
  • 87 Tzotzas T, Desrumaux C, Lagrost L. Plasma phospholipid transfer protein (PLTP): review of an emerging cardiometabolic risk factor. Obes Rev 2009; 10 (4) 403-411
  • 88 Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL, Phillips MC. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res 1999; 40 (5) 781-796
  • 89 Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab 2008; 7 (5) 365-375
  • 90 Cuchel M, Rader DJ. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis?. Circulation 2006; 113 (21) 2548-2555
  • 91 Khera AV, Cuchel M, de la Llera-Moya M , et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364 (2) 127-135
  • 92 Barter PJ, Brewer Jr HB, Chapman MJ, Hennekens CH, Rader DJ, Tall AR. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23 (2) 160-167
  • 93 Charles MA, Kane JP. New molecular insights into CETP structure and function: a review. J Lipid Res 2012; 53 (8) 1451-1458
  • 94 Hewing B, Fisher EA. Rationale for cholesteryl ester transfer protein inhibition. Curr Opin Lipidol 2012; 23 (4) 372-376
  • 95 Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996; 271 (5248) 518-520
  • 96 Silver DL. A carboxyl-terminal PDZ-interacting domain of scavenger receptor B, type I is essential for cell surface expression in liver. J Biol Chem 2002; 277 (37) 34042-34047
  • 97 Xiao C, Watanabe T, Zhang Y , et al. Enhanced cellular uptake of remnant high-density lipoprotein particles: a mechanism for high-density lipoprotein lowering in insulin resistance and hypertriglyceridemia. Circ Res 2008; 103 (2) 159-166