Int J Sports Med 2009; 30(9): 668-671
DOI: 10.1055/s-0029-1220733
Clinical Sciences

© Georg Thieme Verlag KG Stuttgart · New York

Cystatin C a Marker for Renal Function after Exercise

A. Mingels 1 , L. Jacobs 1 , V. Kleijnen 1 , W. Wodzig 1 , M. van Dieijen-Visser 1
  • 1Department of Clinical Chemistry, University Hospital Maastricht, Maastricht, Netherlands
Further Information

Publication History

accepted after revision February 10, 2009

Publication Date:
18 June 2009 (online)

Abstract

Renal impairment is common during and after severe exercise. In clinical practice, renal function is evaluated using serum creatinine, urine parameters, and equations to estimate the Glomular Filtration Rate (GFR). However, creatinine levels may be biased by skeletal muscle damage and the GFR equations, requiring age, gender and body weight, are shown to be inadequate in normals. In the present study, we show that serum cystatin C and creatinine concentrations were elevated after marathon running in 26% and 46% of the 70 recreational male runners, respectively, possibly because of reduction in renal blood flow. The mean cystatin C increase was twice as low as compared to creatinine (21% and 41%, respectively), suggesting that cystatin C is indeed less biased by muscle damage. Future research has to reveal whether training diminishes the elevation in renal markers. Overall, cystatin C seems a more reliable method to establish renal function during and after extensive exercise.

References

  • 1 Armstrong RB, Delp MD, Goljan EF, Laughlin MH. Distribution of blood flow in muscles of miniature swine during exercise.  J Appl Physiol. 1987;  62 1285-1298
  • 2 Armstrong RB, Laughlin MH. Exercise blood flow patterns within and among rat muscles after training.  Am J Physiol. 1984;  246 H59-68
  • 3 Bandaranayake N, Ankrah-Tetteh T, Wijeratne S, Swaminathan R. Intra-individual variation in creatinine and cystatin C.  Clin Chem Lab Med. 2007;  45 1237-1239
  • 4 Banfi G, Del Fabbro M, Lippi G. Relation between serum creatinine and body mass index in elite athletes of different sport disciplines.  Br J Sports Med. 2006;  40 675-678 , discussion 678
  • 5 Bellinghieri G, Savica V, Santoro D. Renal alterations during exercise.  J Ren Nutr. 2008;  18 158-164
  • 6 Bostom AG, Kronenberg F, Ritz E. Predictive performance of renal function equations for patients with chronic kidney disease and normal serum creatinine levels.  J Am Soc Nephrol. 2002;  13 2140-2144
  • 7 Clarkson PM. Exertional rhabdomyolysis and acute renal failure in marathon runners.  Sports Med. 2007;  37 361-363
  • 8 Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine.  Nephron. 1976;  16 31-41
  • 9 Delanaye P, Cavalier E, Depas G, Chapelle JP, Krzesinski JM. New data on the intraindividual variation of cystatin C.  Nephron Clin Pract. 2008;  108 c246-c248
  • 10 Finney H, Newman DJ, Price CP. Adult reference ranges for serum cystatin C, creatinine and predicted creatinine clearance.  Ann Clin Biochem. 2000;  37 49-59
  • 11 Fraser CG, Harris EK. Generation and application of data on biological variation in clinical chemistry.  Crit Rev Clin Lab Sci. 1989;  27 409-437
  • 12 Gerth J, Ott U, Funfstuck R, Bartsch R, Keil E, Schubert K, Hubscher J, Scheucht S, Stein G. The effects of prolonged physical exercise on renal function, electrolyte balance and muscle cell breakdown.  Clin Nephrol. 2002;  57 425-431
  • 13 Keller C, Katz R, Cushman M, Fried LF, Shlipak M. Association of kidney function with inflammatory and procoagulant markers in a diverse cohort: A cross-sectional analysis from the Multi-Ethnic Study of Atherosclerosis (MESA).  BMC Nephrol. 2008;  9 9
  • 14 Le Meur Y, Paraf F, Szelag JC, Aldigier JC, Leroux-Robert C. Acute renal failure in a marathon runner: role of glomerular bleeding in tubular injury.  Am J Med. 1998;  105 251-252
  • 15 Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group.  Ann Intern Med. 1999;  130 461-470
  • 16 Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, De Zeeuw D, Hostetter TH, Lameire N, Eknoyan G. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO).  Kidney Int. 2005;  67 2089-2100
  • 17 Lippi G, Schena F, Salvagno GL, Tarperi C, Montagnana M, Gelati M, Banfi G, Guidi GC. Acute variation of estimated glomerular filtration rate following a half-marathon run.  Int J Sports Med. 2008;  , Doi: 10 1055/s-2008-1038745
  • 18 Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury.  Crit Care. 2007;  11 R31
  • 19 Neumayr G, Pfister R, Hoertnagl H, Mitterbauer G, Getzner W, Ulmer H, Gaenzer H, Joannidis M. The effect of marathon cycling on renal function.  Int J Sports Med. 2003;  24 131-137
  • 20 Neumayr G, Pfister R, Hoertnagl H, Mitterbauer G, Prokop W, Joannidis M. Renal function and plasma volume following ultramarathon cycling.  Int J Sports Med. 2005;  26 2-8
  • 21 Neviackas JA, Bauer JH. Renal function abnormalities induced by marathon running.  South Med J. 1981;  74 1457-1460
  • 22 Refsum HE, Stromme SB. Relationship between urine flow, glomerular filtration, and urine solute concentrations during prolonged heavy exercise.  Scand J Clin Lab Invest. 1975;  35 775-780
  • 23 Rose BD, Post TW. Renal circulation and glomular filtration rate. In: Wonsciewicz M, McCullough K, David K eds Clinical physiology of acid-base and electrolyte disorders. fifth edition. The MacGraw-Hill Companies 2001: 21-70
  • 24 Rule AD, Larson TS, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease.  Ann Intern Med. 2004;  141 929-937
  • 25 Shlipak MG. Cystatin C as a marker of glomerular filtration rate in chronic kidney disease: influence of body composition.  Nat Clin Pract Nephrol. 2007;  3 188-189
  • 26 Sjostrom P, Tidman M, Jones I. Determination of the production rate and non-renal clearance of cystatin C and estimation of the glomerular filtration rate from the serum concentration of cystatin C in humans.  Scand J Clin Lab Invest. 2005;  65 111-124
  • 27 Stevens LA, Coresh J, Feldman HI, Greene T, Lash JP, Nelson RG, Rahman M, Deysher AE, Zhang YL, Schmid CH, Levey AS. Evaluation of the modification of diet in renal disease study equation in a large diverse population.  J Am Soc Nephrol. 2007;  18 2749-2757
  • 28 Tenstad O, Roald AB, Grubb A, Aukland K. Renal handling of radiolabelled human cystatin C in the rat.  Scand J Clin Lab Invest. 1996;  56 409-414
  • 29 Tidgren B, Hjemdahl P, Theodorsson E, Nussberger J. Renal neurohormonal and vascular responses to dynamic exercise in humans.  J Appl Physiol. 1991;  70 2279-2286
  • 30 Verhave JC, Fesler P, Ribstein J, du Cailar G, Mimran A. Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index.  Am J Kidney Dis. 2005;  46 233-241
  • 31 Vinge E, Lindergard B, Nilsson-Ehle P, Grubb A. Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults.  Scand J Clin Lab Invest. 1999;  59 587-592

Correspondence

Prof. M. van Dieijen-VisserPhD 

Department of Clinical Chemistry

University Hospital Maastricht

PO Box 5800

6202 AZ Maastricht

Netherlands

Phone: +31/43/387 46 94

Fax: +31/43/387 46 67

Email: mp.van.dieijen.visser@mumc.nl

    >