Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Rapid measurement of total antioxidant capacity in plants

Abstract

There is growing interest in measuring the antioxidant status of plant tissues. This protocol describes the oxygen radical absorbance capacity (ORAC) assay, which measures antioxidant inhibition of peroxyl radical–induced oxidations and is a measure of total antioxidant capacity. The assay is performed in a microplate and is assessed with a 96-well multi-detection plate reader. Total antioxidant capacity of 64 experimental samples can easily be analyzed in 1 d. This assay is presented along with rapid assays for total phenolic content and total ascorbate content. Overall, these assays provide a general diagnostic tool of the antioxidant capacity in leaf tissue extracts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical fluorescence curves and trolox standard curves for the oxygen radical absorbance capacity (ORAC) assay.
Figure 2: Relationship between total antioxidant capacity (oxygen radical absorbance capacity, ORAC) and phenolic content and total ascorbate content in field-grown soybean leaves.

Similar content being viewed by others

References

  1. Asada, K. & Takehashi, M. Production and scavenging of active oxygen in photosynthesis. In Photoinhibition (eds. Kyle, D.J., Osmond, C.B. & Arntzen, C.J.) 227–287 (Elsevier, Amsterdam, The Netherlands, 1987).

    Google Scholar 

  2. Finkel, T. & Holbrook, N.J. Oxidants, oxidative stress and the biology of aging. Nature 408, 239–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Bolwell, G.P. et al. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J. Exp. Bot. 53, 1367–1376 (2002).

    CAS  PubMed  Google Scholar 

  4. Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Neill, S., Desikan, R. & Hancock, J. Hydrogen peroxide signaling. Curr. Opin. Plant Biol. 5, 388–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Polle, A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol. 126, 445–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Carol, R.J. & Dolam, L. The role of reactive oxygen species in cell growth: lessons from root hairs. J. Exp. Bot. 57, 1829–1834 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Pei, Z.M. et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406, 731–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. De Gara, L., de Pinto, M.C. & Tommasi, F. The antioxidant systems vis-a-vis reactive oxygen species during plant–pathogen interaction. Plant Physiol. Biochem. 41, 863–870 (2003).

    Article  CAS  Google Scholar 

  10. Desikan, R., A-H-Mackerness,, S., Hancock, J.T. & Neill, S.J. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127, 159–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Noctor, G. & Foyer, C.H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249–279 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Dat, J. et al. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57, 779–795 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Desikan, R., Hancock, J. & Neill, S. Reactive oxygen species as signaling molecules. In Antioxidants and Reactive Oxygen Species in Plants (ed. Smirnoff, N.) 169–196 (Blackwell Publishing, Oxford, UK, 2005).

    Google Scholar 

  14. Larson, R.A. The antioxidants of higher plants. Phytochem. 27, 969–978 (1988).

    Article  CAS  Google Scholar 

  15. Ghisseli, A., Serafini, M., Natella, F. & Scaccini, C. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic. Biol. Med. 29, 1106–1114 (2000).

    Article  Google Scholar 

  16. Blokhina, O., Virolainen, E. & Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot.(Lond) 91, 179–194 (2003).

    Article  CAS  Google Scholar 

  17. Huang, M. & Guo, Z. Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol. Plant. 49, 81–84 (2005).

    Article  CAS  Google Scholar 

  18. Nayyar, H. & Gupta, D. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ. Exp. Bot. 58, 106–113 (2006).

    Article  CAS  Google Scholar 

  19. Scebba, F., Pucciarelli, I., Soldatini, G.F. & Ranieri, A. O3-induced changes in the antioxidant systems and their relationship to different degrees of susceptibility of two clover species. Plant Sci. 165, 583–593 (2003).

    Article  CAS  Google Scholar 

  20. Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J.A. & Prior, R.L. High throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 50, 4437–4444 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Cao, G. & Prior, R.L. Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol. 299, 50–62 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Ghisseli, A., Serafini, M., Maiani, G., Assini, E. & Ferro-Luzzi, A. A fluorescence-based method for measuring total plasma antioxidant capability. Free Radic. Biol. Med. 18, 29–36 (1995).

    Article  Google Scholar 

  23. Glazer, A.N. Phycoerythrin fluorescence-based assay for reactive oxygen species. Methods Enzymol. 186, 161–168 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V. & Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. (Lond) 84, 407–412 (1993).

    Article  CAS  Google Scholar 

  25. Wayner, D.D., Burton, G.W., Ingold, K.U. & Locke, S. Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett. 187, 33–37 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Prior, R.L., Wu, X. & Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Ainsworth, E.A. & Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2, 875–877 (2007). doi: 10.1038/nprot.2007.102 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Gillespie, K.M. & Ainsworth, E.A. Measurement of reduced, oxidized and total ascorbate content in plants. Nat. Protoc. 2, 871–874 (2007). doi: 10.1038/nprot.2007.101 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Grace, S.C. Phenolics as antioxidants. In Antioxidants and Reactive Oxygen Species in Plants (ed. Smirnoff, N.) 141–168 (Blackwell Publishing, Oxford, UK, 2005).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant no. DE-FG02-04ER63849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A Ainsworth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillespie, K., Chae, J. & Ainsworth, E. Rapid measurement of total antioxidant capacity in plants. Nat Protoc 2, 867–870 (2007). https://doi.org/10.1038/nprot.2007.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.100

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing