Letter to the editor
ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine

https://doi.org/10.1016/S0021-9290(01)00222-6Get rights and content

Abstract

The Standardization and Terminology Committee (STC) of the International Society of Biomechanics (ISB) proposes a general reporting standard for joint kinematics based on the Joint Coordinate System (JCS), first proposed by Grood and Suntay for the knee joint in 1983 (J. Biomech. Eng. 105 (1983) 136). There is currently a lack of standard for reporting joint motion in the field of biomechanics for human movement, and the JCS as proposed by Grood and Suntay has the advantage of reporting joint motions in clinically relevant terms.

In this communication, the STC proposes definitions of JCS for the ankle, hip, and spine. Definitions for other joints (such as shoulder, elbow, hand and wrist, temporomandibular joint (TMJ), and whole body) will be reported in later parts of the series. The STC is publishing these recommendations so as to encourage their use, to stimulate feedback and discussion, and to facilitate further revisions.

For each joint, a standard for the local axis system in each articulating bone is generated. These axes then standardize the JCS. Adopting these standards will lead to better communication among researchers and clinicians.

Introduction

Since November 1993, the Standardization and Terminology Committee (STC) of the International Society of Biomechanics (ISB) has begun its journey of developing a set of standards for reporting joint motion. Headed by Drs. Peter Cavanagh and Ge Wu in 1993, an initial decision was made to adopt the Joint Coordinate System (JCS), first proposed by Grood and Suntay in 1983 (Grood and Suntay, 1983), as the standard. This decision was publicized to the biomechanics community via Biomech-L, an electronic discussion network. With the enormous amount of support received from the Biomech-L subscribers, the STC then decided to move forward with this decision. A group of volunteers was recruited via Biomech-L who would like to participate in the effort of developing the JCS for each of the major joints in the body. To date, nine subcommittees involving a total of 25 people have been established and, so far, eight proposals have been completed. They include ankle, hip, spine, shoulder, elbow, hand and wrist, TMJ, and whole body.

There are two main reasons as to why these JCSs are established. First, there is a lack of standard for reporting joint motion in the field of biomechanics for human movement. This makes the comparisons among various studies difficult, if not impossible. Secondly, the use of JCS as proposed by Grood and Suntay has the advantage of reporting joint motions in clinically relevant terms. This makes the application and interpretation of biomechanical findings easier and more welcoming to clinicians.

Although all of the JCS recommendations have been published in various forms, such as in previous ISB Newsletters, and on the ISB Home Page, only a few of them have been test-used and subsequently revised. The purpose of this paper is to present these JCS definitions to the biomechanics community so as to encourage the use of these recommendations, to provide first hand feedback, and to facilitate the revisions. It is hoped that this process will help the biomechanics community to move towards the development and use of a set of widely acceptable standards for better communication among various research groups, and among biomechanists, physicians, physical therapists, and other related interest groups.

Section snippets

Overview of JCS

All recommendations of JCS for various joints follow the similar procedures as proposed by Grood and Suntay (1983). First, a Cartesian coordinate system (CCS) is established for each of the two adjacent body segments. The axes in these CCSs are defined based on bony landmarks that are either palpable or identifiable from X-rays, and follow the ISB general recommendations (Wu and Cavanagh, 1995). The common origin of both axis systems is the point of reference for the linear translation

Acknowledgements

Drs Michell Gatton (Queensland University of Technology, Australia) and Dr. Stuart McGill (University of Waterloo, Canada) made valuable suggestions on the JCS for the spine.

References (16)

There are more references available in the full text version of this article.

Cited by (2416)

View all citing articles on Scopus
1

Experts in ankle joint.

2

Experts in hip joint.

3

Expert in spine.

View full text