Skip to main content
Log in

Are the Mechanical or Material Properties of the Achilles and Patellar Tendons Altered in Tendinopathy? A Systematic Review with Meta-analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Changes in the mechanical behaviour of the Achilles and patellar tendons in tendinopathy could affect muscle performance, and have implications for injury prevention and rehabilitation strategies.

Objectives

To determine the effect of clinically diagnosed tendinopathy on the mechanical and material properties of the Achilles tendon (AT) and patellar tendon (PT).

Design

Systematic review with meta-analysis.

Methods

A search of electronic databases (SPORTDiscus, CINAHL, PubMed, ScienceDirect and Google Scholar) was conducted to identify research articles that reported local and global in vivo mechanical (e.g. strain, stiffness) and/or material properties (e.g. modulus) of the AT and/or PT in people with and without tendinopathy. Effect sizes and corresponding 95% confidence intervals for individual studies were calculated for tendon strain, stiffness, modulus and cross-sectional area.

Results

Eighteen articles met the inclusion criteria (AT only = 11, PT only = 5, AT and PT = 2). There was consistent evidence that the reported AT strain was higher in people with tendinopathy, compared to asymptomatic controls. People with Achilles tendinopathy had a lower AT global stiffness, lower global modulus and lower local modulus, compared to asymptomatic controls. In contrast, there was no clear and consistent evidence that the global or local mechanical or material properties of the PT are altered in tendinopathy.

Conclusions

The in vivo mechanical and material properties of the Achilles tendon-aponeurosis are altered in tendinopathy, compared to asymptomatic tendons. Despite a similar clinical presentation to Achilles tendinopathy, patellar tendinopathy does not appear to alter the tensile behaviour of the PT in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khan KM, Cook JL, Kannus P, Maffulli N, Bonar SF. Time to abandon the “tendinitis” myth. Br Med J. 2002;324(7338):626–7.

    Article  CAS  Google Scholar 

  2. Rees JD, Maffulli N, Cook J. Management of tendinopathy. Am J Sports Med. 2009;37(9):1855–67.

    Article  PubMed  Google Scholar 

  3. Fredberg U, Stengaard-Pedersen K. Chronic tendinopathy tissue pathology, pain mechanisms, and etiology with a special focus on inflammation. Scand J Med Sci Sports. 2008;18(1):3–15.

    Article  PubMed  CAS  Google Scholar 

  4. Grigg NL, Wearing SC, Smeathers JE. Achilles tendinopathy has an aberrant strain response to eccentric exercise. Med Sci Sports Exerc. 2012;44(1):12–7.

    Article  PubMed  Google Scholar 

  5. Nuri L, Obst S, Newsham-West R, Barrett R. Three-dimensional deformation of the Achilles tendon during load in people with unilateral mid-portion Achilles tendinopathy. J Sci Med Sport. 2017;20:e71.

    Article  Google Scholar 

  6. Nuri L, Obst SJ, Newsham-West R, Barrett RS. The tendinopathic Achilles tendon does not remain iso-volumetric upon repeated loading: insights from 3D ultrasound. J Exp Biol. 2017;220(Pt 17):3053–61.

    Article  PubMed  Google Scholar 

  7. Wang JH. Mechanobiology of tendon. J Biomech. 2006;39(9):1563–82.

    Article  PubMed  Google Scholar 

  8. Jozsa L, Reffy A, Kannus P, Demel S, Elek E. Pathological alterations in human tendons. Arch Orthop Trauma Surg. 1990;110(1):15–21.

    Article  PubMed  CAS  Google Scholar 

  9. Riley G. The pathogenesis of tendinopathy. A molecular perspective. Rheumatology. 2003;43(2):131–42.

    Article  PubMed  CAS  Google Scholar 

  10. Ireland D, Harrall R, Curry V, Holloway G, Hackney R, Hazleman B, et al. Multiple changes in gene expression in chronic human Achilles tendinopathy. Matrix Biol. 2001;20(3):159–69.

    Article  PubMed  CAS  Google Scholar 

  11. Kannus P, Jozsa L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am. 1991;73(10):1507–25.

    Article  PubMed  CAS  Google Scholar 

  12. Maffulli N, Khan KM, Puddu G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy. 1998;14(8):840–3.

    Article  PubMed  CAS  Google Scholar 

  13. Archambault JM, Wiley JP, Bray RC, Verhoef M, Wiseman DA, Elliott PD. Can sonography predict the outcome in patients with achillodynia? J Clin Ultrasound. 1998;26(7):335–9.

    Article  PubMed  CAS  Google Scholar 

  14. Arya S, Kulig K. Tendinopathy alters mechanical and material properties of the Achilles tendon. J Appl Physiol. 2010;108(3):670–5.

    Article  PubMed  Google Scholar 

  15. Jozsa L, Kvist M, Balint B, Reffy A, Jarvinen M, Lehto M, et al. The role of recreational sport activity in Achilles tendon rupture: a clinical, pathoanatomical, and sociological study of 292 cases. Am J Sports Med. 1989;17(3):338–43.

    Article  PubMed  CAS  Google Scholar 

  16. Lichtwark GA, Wilson AM. In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J Exp Biol. 2005;208(24):4715–25.

    Article  PubMed  CAS  Google Scholar 

  17. Lichtwark GA, Wilson AM. Is Achilles tendon compliance optimised for maximum muscle efficiency during locomotion? J Biomech. 2007;40(8):1768–75.

    Article  PubMed  CAS  Google Scholar 

  18. Obst SJ, Newsham-West R, Barrett RS. Changes in Achilles tendon mechanical properties following eccentric heel drop exercise are specific to the free tendon. Scand J Med Sci Sports. 2016;26(4):421–31.

    Article  PubMed  CAS  Google Scholar 

  19. Obst SJ, Barrett RS, Newsham-West R. Immediate effect of exercise on Achilles tendon properties: systematic review. Med Sci Sports Exerc. 2013;45(8):1534–44.

    Article  PubMed  Google Scholar 

  20. Obst SJ, Newsham-West R, Barrett RS. Three-dimensional morphology and strain of the human Achilles free tendon immediately following eccentric heel drop exercise. J Exp Biol. 2015;218(Pt 24):3894–900.

    Article  PubMed  Google Scholar 

  21. Nuri L, Obst SJ, Newsham-West R, Barrett RS. Regional three-dimensional deformation of human Achilles tendon during conditioning. Scand J Med Sci Sports. 2017;27:1263–72.

    Article  PubMed  CAS  Google Scholar 

  22. Nuri L, Obst SJ, Newsham-West R, Barrett RS. Recovery of human Achilles tendon three-dimensional deformation following conditioning. J Sci Med Sport. 2018;21:473–8.

    Article  PubMed  Google Scholar 

  23. Lichtwark GA, Cresswell AG, Newsham-West RJ. Effects of running on human Achilles tendon length-tension properties in the free and gastrocnemius components. J Exp Biol. 2013;216(Pt 23):4388–94.

    Article  PubMed  Google Scholar 

  24. Onambele GL, Narici MV, Maganaris CN. Calf muscle-tendon properties and postural balance in old age. J Appl Physiol. 2006;100(6):2048–56.

    Article  PubMed  Google Scholar 

  25. Kujala UM, Sarna S, Kaprio J. Cumulative incidence of Achilles tendon rupture and tendinopathy in male former elite athletes. Clin J Sport Med. 2005;15(3):133–5.

    Article  PubMed  Google Scholar 

  26. Malliaras P, Cook J, Purdam C, Rio E. Patellar tendinopathy: clinical diagnosis, load management, and advice for challenging case presentations. J Orthop Sports Phys Ther. 2015;45(11):887–98.

    Article  PubMed  Google Scholar 

  27. DeFrate LE, Nha KW, Papannagari R, Moses JM, Gill TJ, Li G. The biomechanical function of the patellar tendon during in vivo weight-bearing flexion. J Biomech. 2007;40(8):1716–22.

    Article  PubMed  Google Scholar 

  28. Wiesinger H-P, Rieder F, Kösters A, Müller E, Seynnes OR. Are sport-specific profiles of tendon stiffness and cross-sectional area determined by structural or functional integrity? PLoS One. 2016;11(6):e0158441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wiesinger H-P, Kösters A, Müller E, Seynnes OR. Effects of increased loading on in vivo tendon properties: a systematic review. Med Sci Sports Exerc. 2015;47(9):1885–95.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Narici MV, Maffulli N, Maganaris CN. Ageing of human muscles and tendons. Disabil Rehabil. 2008;30(20–22):1548–54.

    Article  PubMed  Google Scholar 

  31. Maganaris CN, Narici MV, Maffulli N. Biomechanics of the Achilles tendon. Disabil Rehabil. 2008;30(20–22):1542–7.

    Article  PubMed  Google Scholar 

  32. Lichtwark G, Barclay C. The influence of tendon compliance on muscle power output and efficiency during cyclic contractions. J Exp Biol. 2010;213(5):707–14.

    Article  PubMed  CAS  Google Scholar 

  33. Sawicki GS, Sheppard P, Roberts TJ. Power amplification in an isolated muscle–tendon unit is load dependent. J Exp Biol. 2015;218(22):3700–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Galantis A, Woledge RC. The theoretical limits to the power output of a muscle–tendon complex with inertial and gravitational loads. Proc R Soc Lond B Biol Sci. 2003;270(1523):1493–8.

    Article  Google Scholar 

  35. Wren TA, Lindsey DP, Beaupre GS, Carter DR. Effects of creep and cyclic loading on the mechanical properties and failure of human Achilles tendons. Ann Biomed Eng. 2003;31(6):710–7.

    Article  PubMed  Google Scholar 

  36. Farris DJ, Trewartha G, McGuigan MP. Could intra-tendinous hyperthermia during running explain chronic injury of the human Achilles tendon? J Biomech. 2011;44(5):822–6.

    Article  PubMed  Google Scholar 

  37. Fouré A, Nordez A, Cornu C. Plyometric training effects on Achilles tendon stiffness and dissipative properties. J Appl Physiol. 2010;109(3):849–54.

    Article  PubMed  Google Scholar 

  38. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41.

  39. Galna B, Peters A, Murphy AT, Morris ME. Obstacle crossing deficits in older adults: a systematic review. Gait Posture. 2009;30(3):270–5.

    Article  PubMed  Google Scholar 

  40. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37–46.

  41. Cohen J. Statistical power analysis current directions. Psychol Sci. 1992;1(3):98–101.

    Google Scholar 

  42. Heales LJ, Bergin MJ, Vicenzino B, Hodges PW. Forearm muscle activity in lateral epicondylalgia: a systematic review with quantitative analysis. Sports Med. 2016;46(12):1833–45.

    Article  PubMed  Google Scholar 

  43. Aubry S, Nueffer JP, Tanter M, Becce F, Vidal C, Michel F. Viscoelasticity in Achilles tendonopathy: quantitative assessment by using real-time shear-wave elastography. Radiology. 2015;274(3):821–9.

    Article  PubMed  Google Scholar 

  44. Chang YJ, Kulig K. The neuromechanical adaptations to Achilles tendinosis. J Physiol. 2015;593(15):3373–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Child S, Bryant AL, Clark RA, Crossley KM. Mechanical properties of the Achilles tendon aponeurosis are altered in athletes with Achilles tendinopathy. Am J Sports Med. 2010;38(9):1885–93.

    Article  PubMed  Google Scholar 

  46. Chimenti RL, Flemister AS, Tome J, McMahon JM, Flannery MA, Xue Y, et al. Altered tendon characteristics and mechanical properties associated with insertional Achilles tendinopathy. J Orthop Sports Phys Ther. 2014;44(9):680–9.

    Article  PubMed  Google Scholar 

  47. Intziegianni K, Cassel M, Rauf S, White S, Rector M, Kaplick H, et al. Influence of age and pathology on Achilles tendon properties during a single-leg jump. Int J Sports Med. 2016;37(12):973–8.

    Article  PubMed  CAS  Google Scholar 

  48. Kulig K, Chang YJ, Winiarski S, Bashford GR. Ultrasound-based tendon micromorphology predicts mechanical characteristics of degenerated tendons. Ultrasound Med Biol. 2016;42(3):664–73.

    Article  PubMed  Google Scholar 

  49. Ooi CC, Schneider ME, Malliaras P, Chadwick M, Connell DA. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: comparison with B-mode ultrasound and color Doppler imaging. Ultrasound Med Biol. 2015;41(1):15–25.

    Article  PubMed  Google Scholar 

  50. Wang HK, Lin KH, Su SC, Shih TT, Huang YC. Effects of tendon viscoelasticity in Achilles tendinosis on explosive performance and clinical severity in athletes. Scand J Med Sci Sports. 2012;22(6):e147–55.

    Article  PubMed  Google Scholar 

  51. Chimenti RL, Bucklin M, Kelly M, Ketz J, Flemister AS, Richards MS, et al. Insertional Achilles tendinopathy associated with altered transverse compressive and axial tensile strain during ankle dorsiflexion. J Orthop Res. 2017;35(4):910–5.

    Article  PubMed  Google Scholar 

  52. Couppe C, Kongsgaard M, Aagaard P, Vinther A, Boesen M, Kjaer M, et al. Differences in tendon properties in elite badminton players with or without patellar tendinopathy. Scand J Med Sci Sports. 2013;23(2):e89–95.

    Article  PubMed  CAS  Google Scholar 

  53. Helland C, Bojsen-Moller J, Raastad T, Seynnes OR, Moltubakk MM, Jakobsen V, et al. Mechanical properties of the patellar tendon in elite volleyball players with and without patellar tendinopathy. Br J Sports Med. 2013;47(13):862–8.

    Article  PubMed  Google Scholar 

  54. Kongsgaard M, Qvortrup K, Larsen J, Aagaard P, Doessing S, Hansen P, et al. Fibril morphology and tendon mechanical properties in patellar tendinopathy: effects of heavy slow resistance training. Am J Sports Med. 2010;38(4):749–56.

    Article  PubMed  Google Scholar 

  55. Lee WC, Zhang ZJ, Masci L, Ng GYF, Fu SN. Alterations in mechanical properties of the patellar tendon is associated with pain in athletes with patellar tendinopathy. Eur J Appl Physiol. 2017;117(5):1039–45.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang ZJ. Ng GY-f, Lee WC, Fu SN. Changes in morphological and elastic properties of patellar tendon in athletes with unilateral patellar tendinopathy and their relationships with pain and functional disability. PLoS One. 2014;9(10):e108337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Coombes BK, Tucker K, Vicenzino B, Vuvan V, Mellor R, Heales L, et al. Achilles and patellar tendinopathy display opposite changes in elastic properties: a shear wave elastography study. Scand J Med Sci Sports. https://doi.org/10.1111/sms.12986.

  58. Dirrichs T, Quack V, Gatz M, Tingart M, Kuhl CK, Schrading S. Shear wave elastography (SWE) for the evaluation of patients with tendinopathies. Acad Radiol. 2016;23(10):1204–13.

    Article  PubMed  Google Scholar 

  59. Maffulli N, Testa V, Capasso G, Ewen SW, Sullo A, Benazzo F, et al. Similar histopathological picture in males with Achilles and patellar tendinopathy. Med Sci Sports Exerc. 2004;36(9):1470–5.

    Article  PubMed  Google Scholar 

  60. Leppilahti J, Puranen J, Orava S. Incidence of Achilles tendon rupture. Acta Orthop Scand. 1996;67(3):277–9.

    Article  PubMed  CAS  Google Scholar 

  61. Wang T, Lin Z, Day RE, Gardiner B, Landao-Bassonga E, Rubenson J, et al. Programmable mechanical stimulation influences tendon homeostasis in a bioreactor system. Biotechnol Bioeng. 2013;110(5):1495–507.

    Article  PubMed  CAS  Google Scholar 

  62. Maganaris CN, Narici MV, Almekinders LC, Maffulli N. Biomechanics and pathophysiology of overuse tendon injuries: ideas on insertional tendinopathy. Sports Med. 2004;34(14):1005–17.

    Article  PubMed  Google Scholar 

  63. Benjamin M, Toumi H, Ralphs J, Bydder G, Best T, Milz S. Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat. 2006;208(4):471–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Maffulli N, Reaper J, Ewen SW, Waterston SW, Barrass V. Chondral metaplasia in calcific insertional tendinopathy of the Achilles tendon. Clin J Sport Med. 2006;16(4):329–34.

    Article  PubMed  Google Scholar 

  65. Bah I, Kwak ST, Chimenti RL, Richards MS, Ketz JP, Flemister AS, et al. Mechanical changes in the Achilles tendon due to insertional Achilles tendinopathy. J Mech Behav Biomed Mater. 2016;53:320–8.

    Article  PubMed  Google Scholar 

  66. Wren TA, Beaupre GS, Carter DR. Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia. J Rehabil Res Dev. 2000;37(2):135.

    PubMed  CAS  Google Scholar 

  67. Docking SI, Cook J. Pathological tendons maintain sufficient aligned fibrillar structure on ultrasound tissue characterization (UTC). Scand J Med Sci Sports. 2016;26(6):675–83.

    Article  PubMed  CAS  Google Scholar 

  68. Docking S, Samiric T, Scase E, Purdam C, Cook J. Relationship between compressive loading and ECM changes in tendons. Muscle Ligaments Tendons J. 2013;3(1):7–11.

    Google Scholar 

  69. Obst SJ, Boyd R, Read F, Barber L. Quantitative 3-D ultrasound of the medial gastrocnemius muscle in children with unilateral spastic Cerebral Palsy. Ultrasound Med Biol. 2017;43(12):2814–23.

    Article  PubMed  Google Scholar 

  70. Martin JA, Biedrzycki AH, Lee KS, DeWall RJ, Brounts SH, Murphy WL, et al. In vivo measures of shear wave speed as a predictor of tendon elasticity and strength. Ultrasound Med Biol. 2015;41(10):2722–30.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Heales L, Lim E, Hodges P, Vicenzino B. Sensory and motor deficits exist on the non-injured side of patients with unilateral tendon pain and disability—implications for central nervous system involvement: a systematic review with meta-analysis. Br J Sports Med. 2014;48(19):1400–6.

    Article  PubMed  CAS  Google Scholar 

  72. Grigg NL, Wearing SC, O’Toole JM, Smeathers JE. Achilles tendinopathy modulates force frequency characteristics of eccentric exercise. Med Sci Sports Exerc. 2013;45(3):520–6.

    Article  PubMed  Google Scholar 

  73. Girish G, Lobo LG, Jacobson JA, Morag Y, Miller B, Jamadar DA. Ultrasound of the shoulder: asymptomatic findings in men. Am J Roentgenol. 2011;197(4):W713–9.

    Article  Google Scholar 

  74. Kubo K, Morimoto M, Komuro T, Tsunoda N, Kanehisa H, Fukunaga T, et al. Age-related differences in the properties of the plantar flexor muscles and tendons. Med Sci Sports Exerc. 2007;39(3):541–7.

    Article  PubMed  Google Scholar 

  75. Kubo K, Kanehisa H, Fukunaga T. Gender differences in the viscoelastic properties of tendon structures. Eur J Appl Physiol. 2003;88(6):520–6.

    Article  PubMed  Google Scholar 

  76. Ochala J, Valour D, Pousson M, Lambertz D, Van Hoecke J. Gender differences in human muscle and joint mechanical properties during plantar flexion in old age. J Gerontol A Biol Sci Med Sci. 2004;59(5):441–8.

    Article  PubMed  Google Scholar 

  77. Onambele GN, Burgess K, Pearson SJ. Gender-specific in vivo measurement of the structural and mechanical properties of the human patellar tendon. J Orthop Res. 2007;25(12):1635–42.

    Article  PubMed  Google Scholar 

  78. Cook JL, Purdam C. Is compressive load a factor in the development of tendinopathy? Br J Sports Med. 2012;46(3):163.

    Article  PubMed  CAS  Google Scholar 

  79. Pearson SJ, Mohammed ASA, Hussain SR. Patellar tendon in vivo regional strain with varying knee angle. J Biomech. 2017;61:45–50.

    Article  PubMed  Google Scholar 

  80. Malliaras P, Barton CJ, Reeves ND, Langberg H. Achilles and patellar tendinopathy loading programmes: a systematic review comparing clinical outcomes and identifying potential mechanisms for effectiveness. Sports Med. 2013;43(4):267–86.

    Article  PubMed  Google Scholar 

  81. Cook J, Purdam CR. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med. 2009;43(6):409–16.

    Article  PubMed  CAS  Google Scholar 

  82. Pizzolato C, Lloyd DG, Barrett RS, Cook JL, Zheng MH, Besier TF, et al. Bioinspired technologies to connect musculoskeletal mechanobiology to the person for training and rehabilitation. Front Comput Neurosc. 2017. https://doi.org/10.3389/fncom.2017.00096.

    Article  Google Scholar 

  83. Robson M, Benjamin M, Gishen P, Bydder G. Magnetic resonance imaging of the Achilles tendon using ultrashort TE (UTE) pulse sequences. Clin Radiol. 2004;59(8):727–35.

    Article  PubMed  CAS  Google Scholar 

  84. Smith DW, Rubenson J, Lloyd D, Zheng M, Fernandez J, Besier T, et al. A conceptual framework for computational models of Achilles tendon homeostasis. Wiley Interdiscip Rev Syst Biol Med. 2013;5(5):523–38.

    Article  PubMed  Google Scholar 

  85. Seynnes OR, Bojsen-Møller J, Albracht K, Arndt A, Cronin NJ, Finni T, et al. Ultrasound-based testing of tendon mechanical properties: a critical evaluation. J Appl Physiol. 2015;118(2):133–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Obst.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Steven Obst, Luke Heales, Benjamin Schrader, Scott Davis, Keely Dodd, Cory Holzberger, Louis Beavis and Rod Barrett declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obst, S.J., Heales, L.J., Schrader, B.L. et al. Are the Mechanical or Material Properties of the Achilles and Patellar Tendons Altered in Tendinopathy? A Systematic Review with Meta-analysis. Sports Med 48, 2179–2198 (2018). https://doi.org/10.1007/s40279-018-0956-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-018-0956-7

Navigation