Skip to main content

Advertisement

Log in

An Optimization Approach to Inverse Dynamics Provides Insight as to the Function of the Biarticular Muscles During Vertical Jumping

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 29 June 2011

Abstract

Traditional inverse dynamics approaches to calculating the inter-segmental moments are limited in their ability to accurately reflect the function of the biarticular muscles. In particular they are based on the assumption that the net inter-segmental moment is zero and that total joint moments are independent of muscular activity. Traditional approaches to calculating muscular forces from the inter-segmental moments are based on a consideration of joint moments which do not encapsulate the potential moment asymmetry between segments. In addition, traditional approaches may artificially constrain the activity of the biarticular muscles. In this study, an optimization approach to the simultaneous inverse determination of inter-segmental moments and muscle forces (the 1-step method) based on a consideration of segmental rotations was employed to study vertical jumping and contrasted with the more traditional 2-step approach of determining inter-segmental moments from an inverse dynamics analysis then muscle forces using optimization techniques. The 1-step method resulted in significantly greater activation of both the monoarticular and biarticular musculature which was then translated into significantly greater joint contact forces, muscle powers, and inter-segmental moments. The results of this study suggest that traditional conceptions of inter-segmental moments do not completely encapsulate the function of the biarticular muscles and that joint function can be better understood by recognizing the asymmetry in inter-segmental moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AS:

Anterior tibial shear

BI:

Inverse optimization approach (biarticular muscles with standard upper bounds)

BIH:

Inverse optimization approach (selected biarticular muscles have double the standard upper bound)

GCS:

Global coordinate system

LCS:

Local coordinate system

MONO:

Inverse optimization approach (only monoarticular muscles)

PFJ:

Patellofemoral joint contact force

PS:

Posterior tibial shear

TFJ:

Tibiofemoral joint contact force

TRAD:

Traditional method of calculating joint moments

TRADB:

Traditional method of calculating muscle forces (biarticular muscles with standard upper bounds)

TRADM:

Traditional method of calculating muscle forces (only monoarticular muscles)

References

  1. Anderson, F. C., and M. G. Pandy. A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2:201–231, 1999.

    Article  Google Scholar 

  2. Bobbert, M. F., K. G. M. Gerritsen, M. C. A. Litjens, and A. J. VanSoest. Why is countermovement jump height greater than squat jump height? Med. Sci. Sports Exerc. 28:1402–1412, 1996.

    PubMed  CAS  Google Scholar 

  3. Bobbert, M. F., and J. P. van Zandwijk. Dynamics of force and muscle stimulation in human vertical jumping. Med. Sci. Sports Exerc. 31:303–310, 1999.

    Article  PubMed  CAS  Google Scholar 

  4. Cleather, D. J. Forces in the Knee During Vertical Jumping and Weightlifting. Ph.D. thesis, Imperial College London, 2010.

  5. Cleather, D. J., and A. M. J. Bull. Lower extremity musculoskeletal geometry effects the calculation of patellofemoral forces in vertical jumping and weightlifting. Proc. IME H J. Eng. Med. 224:1073–1083, 2010.

    Article  CAS  Google Scholar 

  6. Crowninshield, R. D., and R. A. Brand. A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14:793–801, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. de Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29:1223–1230, 1996.

    Article  PubMed  Google Scholar 

  8. Dumas, R., R. Aissaoui, and J. A. de Guise. A 3D generic inverse dynamic method using wrench notation and quaternion algebra. Comput. Methods Biomech. Biomed. Eng. 7:159–166, 2004.

    Article  CAS  Google Scholar 

  9. Dumas, R., E. Nicol, and L. Cheze. Influence of the 3D inverse dynamic method on the joint forces and moments during gait. J. Biomech. Eng. 129:786–790, 2007.

    Article  PubMed  CAS  Google Scholar 

  10. Fraysse, F., R. Dumas, L. Cheze, and X. Wang. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking. J. Biomech. 42:2357–2362, 2009.

    Article  PubMed  CAS  Google Scholar 

  11. Gregoire, L., H. E. Veeger, P. A. Huijing, and G. J. van Ingen Schenau. Role of mono- and bi-articular muscles in explosive movements. Int. J. Sports Med. 5:301–305, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Heise, G. D., D. W. Morgan, H. Hough, and M. Craib. Relationships between running economy and temporal EMG characteristics of bi-articular muscles. Int. J. Sports Med. 17:128–133, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Heise, G. D., M. Shinohara, and L. Binks. Biarticular leg muscles and links to running economy. Int. J. Sports Med. 29:688–691, 2008.

    Article  PubMed  CAS  Google Scholar 

  14. Horn, B. K. P. Closed form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4:629–642, 1987.

    Article  Google Scholar 

  15. Horsman, M. D., H. F. J. M. Koopman, F. C. T. van der Helm, L. Poliacu Prose, and H. E. J. Veeger. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 22:239–247, 2007.

    Article  Google Scholar 

  16. Jacobs, R., M. F. Bobbert, and G. J. V. Schenau. Function of monoarticular and biarticular muscles in running. Med. Sci. Sports Exerc. 25:1163–1173, 1993.

    PubMed  CAS  Google Scholar 

  17. Jacobs, R., M. F. Bobbert, and G. J. van Ingen Schenau. Mechanical output from individual muscles during explosive leg extensions: the role of biarticular muscles. J. Biomech. 29:513–523, 1996.

    Article  PubMed  CAS  Google Scholar 

  18. Lees, A., J. Vanrenterghem, and D. de Clercq. The maximal and submaximal vertical jump: implications for strength and conditioning. J. Strength Cond. Res. 18:787–791, 2004.

    PubMed  Google Scholar 

  19. Nha, K. W., R. Papannagari, T. J. Gill, S. K. Van de Velde, A. A. Freiberg, H. E. Rubash, and G. Li. In vivo patellar tracking: Clinical motions and patellofemoral indices. J. Orthop. Res. 26:1067–1074, 2008.

    Article  PubMed  Google Scholar 

  20. Pandy, M. G., and F. E. Zajac. Optimal muscular coordination strategies for jumping. J. Biomech. 24:1–10, 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Pandy, M. G., F. E. Zajac, E. Sim, and W. S. Levine. An optimal control model for maximum-height human jumping. J. Biomech. 23:1185–1198, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Pflum, M. A., K. B. Shelburne, M. R. Torry, M. J. Decker, and M. G. Pandy. Model prediction of anterior cruciate ligament force during drop-landings. Med. Sci. Sports Exerc. 36:1949–1958, 2004.

    Article  PubMed  Google Scholar 

  23. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C++: The Art of Scientific Computing. Cambridge, NY: Cambridge University Press, 1002 pp., 2002.

  24. Prilutsky, B. I., T. Isaka, A. M. Albrecht, and R. J. Gregor. Is coordination of two-joint leg muscles during load lifting consistent with the strategy of minimum fatigue? J. Biomech. 31:1025–1034, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Prilutsky, B. I., and V. M. Zatsiorsky. Tendon action of two-joint muscles: transfer of mechanical energy between joints during jumping, landing, and running. J. Biomech. 27:25–34, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Raikova, R. Prediction of individual muscle forces using Lagrange multipliers method—a model of the upper human limb in the sagittal plane. 1. Theoretical considerations. Comput. Methods Biomech. Biomed. Eng. 3:95–107, 2000.

    Article  Google Scholar 

  27. Raikova, R. Investigation of the peculiarities of two-joint muscles using a 3 DOF model of the human upper limb in the sagittal plane: an optimization approach. Comput. Methods Biomech. Biomed. Eng. 4:463–490, 2001.

    Article  Google Scholar 

  28. Van Sint Jan, S. Skeletal Landmark Definitions: Guidelines for Accurate and Reproducible Palpation. Department of Anatomy, University of Brussels, 2005. www.Ulb.Ac.Be/~Anatemb.

  29. Van Sint Jan, S., and U. D. Croce. Identifying the location of human skeletal landmarks: why standardized definitions are necessary—a proposal. Clin. Biomech. 20:659–660, 2005.

    Article  Google Scholar 

  30. van Soest, A. J., A. L. Schwab, M. F. Bobbert, and G. J. van Ingen Schenau. The influence of the biarticularity of the gastrocnemius muscle on vertical jumping achievement. J. Biomech. 26:1–8, 1993.

    Article  PubMed  Google Scholar 

  31. Vanezis, A., and A. Lees. A biomechanical analysis of good and poor performers of the vertical jump. Ergonomics 48:1594–1603, 2005.

    Article  PubMed  Google Scholar 

  32. Voronov, A. V. The roles of monoarticular and biarticular muscles of the lower limbs in terrestial locomotion. Hum. Physiol. 30:476–484, 2004.

    Article  Google Scholar 

  33. Winter, D. A. Biomechanics and Motor Control of Human Movement. Hoboken, NJ: John Wiley & Sons, 344 pp., 2005.

  34. Woltring, H. J. A Fortran package for generalized, cross-validatory spline smoothing and differentiation. Adv. Eng. Softw. 8:104–113, 1986.

    Google Scholar 

  35. Yamaguchi, G. T. Dynamic Modeling of Musculoskeletal Motion: A Vectorized Approach for Biomechanical Analysis in Three Dimensions. New York, NY: Springer, 257 pp., 2001.

  36. Zajac, F. E., R. R. Neptune, and S. A. Kautz. Biomechanics and muscle coordination of human walking. Part I. Introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16:215–232, 2002.

    Article  PubMed  Google Scholar 

  37. Zatsiorsky, V. M. Kinetics of Human Motion. Champaign, IL: Human Kinetics, 672 pp., 2002.

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for the clarity of their thoughts which greatly increased the transparency of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Cleather.

Additional information

Associate Editor Catherine Disselhorst-Klug oversaw the review of this article.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10439-011-0340-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleather, D.J., Goodwin, J.E. & Bull, A.M.J. An Optimization Approach to Inverse Dynamics Provides Insight as to the Function of the Biarticular Muscles During Vertical Jumping. Ann Biomed Eng 39, 147–160 (2011). https://doi.org/10.1007/s10439-010-0161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0161-9

Keywords

Navigation