Skip to main content
Log in

A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Biomechanical models of the musculoskeletal system are frequently used to study neuromuscular control and simulate surgical procedures. To be broadly applicable, a model must be accessible to users, provide accurate representations of muscles and joints, and capture important interactions between joints. We have developed a model of the upper extremity that includes 15 degrees of freedom representing the shoulder, elbow, forearm, wrist, thumb, and index finger, and 50 muscle compartments crossing these joints. The kinematics of each joint and the force-generating parameters for each muscle were derived from experimental data. The model estimates the muscle–tendon lengths and moment arms for each of the muscles over a wide range of postures. Given a pattern of muscle activations, the model also estimates muscle forces and joint moments. The moment arms and maximum moment-generating capacity of each muscle group (e.g., elbow flexors) were compared to experimental data to assess the accuracy of the model. These comparisons showed that moment arms and joint moments estimated using the model captured important features of upper extremity geometry and mechanics. The model also revealed coupling between joints, such as increased passive finger flexion moment with wrist extension. The computer model is available to researchers at http://nmbl.stanford.edu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amis, A. A., D. Dowson, and V. Wright. Analysis of elbow forces due to high-speed forearm movements. J. Biomech. 13:825–831, 1980.

    Article  CAS  PubMed  Google Scholar 

  2. An, K. N., F. C. Hui, B. F. Morrey, R. L. Linscheid, and E. Y. Chao. Muscles across the elbow joint: A biomechanical analysis. J. Biomech. 14:659–669, 1981.

    Article  CAS  PubMed  Google Scholar 

  3. An, K. N., Y. Ueba, E. Y. Chao, W. P. Cooney, and R. L. Linscheid Tendon excursion and moment arm of index finger muscles. J. Biomech. 16:419–425, 1983.

    Article  CAS  PubMed  Google Scholar 

  4. Brand, P. W., and A. Hollister. Clinical Mechanics of the Hand, 2nd ed. St. Louis, MO: Mosby-Year Book, 1993, p. 386.

    Google Scholar 

  5. Buchanan, T. S. Evidence that maximum muscle stress is not a constant: Differences in specific tension in elbow flexors and extensors. Med. Eng. Phys. 17:529–536, 1995.

    Article  CAS  PubMed  Google Scholar 

  6. Buchanan, T. S., S. L. Delp, and J. A. Solbeck. Muscular resistance to varus and valgus loads at the elbow. J. Biomech. Eng. 120:634–639, 1998.

    CAS  PubMed  Google Scholar 

  7. Buchanan, T. S., and D. A. Shreeve. An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks. J. Biomech. Eng. 118:565–574, 1996.

    CAS  PubMed  Google Scholar 

  8. Dalley, A. F. I., and K. L. Moore. Clinically Oriented Anatomy. Baltimore, MD: Lippincott Williams and Wilkins, 1999.

    Google Scholar 

  9. de Groot, J. H., and R. Brand. A three-dimensional regression model of the shoulder rhythm. Clin. Biomech. 16:735–743, 2001.

    Article  CAS  Google Scholar 

  10. Delp, S. L., A. E. Grierson, and T. S. Buchanan. Maximum isometric moments generated by the wrist muscles in flexion-extension and radial-ulnar deviation. J. Biomech. 29:1371–1375, 1996.

    Article  CAS  PubMed  Google Scholar 

  11. Delp, S. L., and J. P. Loan. A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25:21–34, 1995.

    Article  CAS  PubMed  Google Scholar 

  12. Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.

    Article  CAS  PubMed  Google Scholar 

  13. Engin, A. E., and I. Kaleps. Active muscle torques about long-bone axes of major human joints. Aviat. Space Environ. Med. 51:551–555, 1980.

    CAS  PubMed  Google Scholar 

  14. Fowler, N. K., and A. C. Nicol. A biomechanical analysis of the rheumatoid index finger after joint arthroplasty. Clin. Biomech. 17:400–405, 2002.

    Article  CAS  Google Scholar 

  15. Garner, B. A., and M. G. Pandy. Musculoskeletal model of the upper limb based on the visible human male dataset. Comput. Methods Biomech. Biomed. Eng. 4:93–126, 2001.

    CAS  Google Scholar 

  16. Gonzalez, R. V., T. S. Buchanan, and S. L. Delp. How muscle architecture and moment arms affect wrist flexion-extension moments. J. Biomech. 30:705–712, 1997.

    Article  CAS  PubMed  Google Scholar 

  17. Gordon, C. C., T. Churchill, C. E. Clauser, B. Bradtmiller, J. T. McConville, I. Tebbets, and R. A. Walker. 1988 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics. Natick, MA: United States Army Natick Research, Development and Engineering Center, 1989.

    Google Scholar 

  18. Herrmann, A. M., and S. L. Delp. Moment arm and force-generating capacity of the extensor carpi ulnaris after transfer to the extensor carpi radialis brevis. J. Hand Surg. [Am.] 24:1083–1090, 1999.

    Article  CAS  Google Scholar 

  19. Hollister, A., W. L. Buford, L. M. Myers, D. J. Giurintano, and A. Novick. The axes of rotation of the thumb carpometacarpal joint. J. Orthop. Res. 10:454–460, 1992.

    Article  CAS  PubMed  Google Scholar 

  20. Hollister, A., D. J. Giurintano, W. L. Buford, L. M. Myers, and A. Novick. The axes of rotation of the thumb interphalangeal and metacarpophalangeal joints. Clin. Orthop. 188–193, 1995.

  21. Hughes, R. E., G. Niebur, J. Liu, and K. N. An. Comparison of two methods for computing abduction moment arms of the rotator cuff. J. Biomech. 31:157–160, 1998.

    Article  CAS  PubMed  Google Scholar 

  22. Jacobson, M. D., R. Raab, B. M. Fazeli, R. A. Abrams, M. J. Botte, and R. L. Lieber. Architectural design of the human intrinsic hand muscles. J. Hand Surg. [Am.] 17:804–809, 1992.

    CAS  Google Scholar 

  23. Knutson, J. S., K. L. Kilgore, J. M. Mansour, and P. E. Crago. Intrinsic and extrinsic contributions to the passive moment at the metacarpophalangeal joint. J. Biomech. 33:1675–1681, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Kuechle, D. K., S. R. Newman, E. Itoi, B. F. Morrey, and K. N. An. Shoulder muscle moment arms during horizontal flexion and elevation. J. Shoulder Elbow Surg. 6:429–439, 1997.

    CAS  PubMed  Google Scholar 

  25. Langenderfer, J., S. A. Jerabek, V. B. Thangamani, J. E. Kuhn, and R. E. Hughes. Musculoskeletal parameters of muscles crossing the shoulder and elbow and the effect of sarcomere length sample size on estimation of optimal muscle length. Clin. Biomech. 19:664–670, 2004.

    Article  Google Scholar 

  26. Lemay, M. A., and P. E. Crago. A dynamic model for simulating movements of the elbow, forearm, an wrist. J. Biomech. 29:1319–1330, 1996.

    Article  CAS  PubMed  Google Scholar 

  27. Lemay, M. A., P. E. Crago, and M. W. Keith. Restoration of pronosupination control by FNS in tetraplegia—experimental and biomechanical evaluation of feasibility. J. Biomech. 29:435–442, 1996.

    Article  CAS  PubMed  Google Scholar 

  28. Lieber, R. L., B. M. Fazeli, and M. J. Botte. Architecture of selected wrist flexor and extensor muscles. J. Hand Surg. [Am.] 15:244–250, 1990.

    CAS  Google Scholar 

  29. Lieber, R. L., M. D. Jacobson, B. M. Fazeli, R. A. Abrams, and M. J. Botte. Architecture of selected muscles of the arm and forearm: Anatomy and implications for tendon transfer. J. Hand Surg. [Am.] 17:787–798, 1992.

    CAS  Google Scholar 

  30. Liu, J., R. E. Hughes, W. P. Smutz, G. Niebur, and K. Nan-An. Roles of deltoid and rotator cuff muscles in shoulder elevation. Clin. Biomech. 12:32–38, 1997.

    Article  CAS  Google Scholar 

  31. London, J. T. Kinematics of the elbow. J. Bone Joint Surg. Am. 63:529–535, 1981.

    CAS  PubMed  Google Scholar 

  32. Loren, G. J., S. D. Shoemaker, T. J. Burkholder, M. D. Jacobson, J. Friden, and R. L. Lieber. Human wrist motors: Biomechanical design and application to tendon transfers. J. Biomech. 29:331–342, 1996.

    Article  CAS  PubMed  Google Scholar 

  33. Magermans, D. J., E. K. Chadwick, H. E. Veeger, P. M. Rozing, and F. C. van der Helm. Effectiveness of tendon transfers for massive rotator cuff tears: A simulation study. Clin. Biomech. 19:116–122, 2004.

    Article  CAS  Google Scholar 

  34. Murray, W. M., A. M. Bryden, K. L. Kilgore, and M. W. Keith. The influence of elbow position on the range of motion of the wrist following transfer of the brachioradialis to the extensor carpi radialis brevis tendon. J. Bone Joint Surg. Am. 84-A:2203–2210, 2002.

    PubMed  Google Scholar 

  35. Murray, W. M., T. S. Buchanan, and S. L. Delp. The isometric functional capacity of muscles that cross the elbow. J. Biomech. 33:943–952, 2000.

    Article  CAS  PubMed  Google Scholar 

  36. Murray, W. M., T. S. Buchanan, and S. L. Delp. Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions. J. Biomech. 35:19–26, 2002.

    Article  PubMed  Google Scholar 

  37. Murray, W. M., S. L. Delp, and T. S. Buchanan. Variation of muscle moment arms with elbow and forearm position. J. Biomech. 28:513–525, 1995.

    Article  CAS  PubMed  Google Scholar 

  38. O’Sullivan, L. W., and T. J. Gallwey. Upper-limb surface electro-myography at maximum supination and pronation torques: The effect of elbow and forearm angle. J. Electromyogr. Kinesiol. 12:275–285, 2002.

    Article  PubMed  Google Scholar 

  39. Otis, J. C., C. C. Jiang, T. L. Wickiewicz, M. G. Peterson, R. F. Warren, and T. J. Santner. Changes in the moment arms of the rotator cuff and deltoid muscles with abduction and rotation. J. Bone Joint Surg. Am. 76:667–676, 1994.

    CAS  PubMed  Google Scholar 

  40. Otis, J. C., R. F. Warren, S. I. Backus, T. J. Santner, and J. D. Mabrey. Torque production in the shoulder of the normal young adult male. The interaction of function, dominance, joint angle, and angular velocity. Am. J. Sports Med. 18:119–123, 1990.

    CAS  PubMed  Google Scholar 

  41. Piazza, S. J., and S. L. Delp. Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J. Biomech. Eng. 123:599–606, 2001.

    Article  CAS  PubMed  Google Scholar 

  42. Rancourt, D., and N. Hogan. Stability in force-production tasks. J. Mot. Behav. 33:193–204, 2001.

    CAS  PubMed  Google Scholar 

  43. Ruby, L. K., W. P. Cooney, 3rd, K. N. An, R. L. Linscheid, and E. Y. Chao. Relative motion of selected carpal bones: A kinematic analysis of the normal wrist. J. Hand Surg. [Am.] 13:1–10, 1988.

    CAS  Google Scholar 

  44. Sancho-Bru, J. L., A. Perez-Gonzalez, M. Vergara, and D. J. Giurintano. A 3D biomechanical model of the hand for power grip. J. Biomech. Eng. 125:78–83, 2003.

    Article  PubMed  Google Scholar 

  45. Saul, K. R., W. M. Murray, V. R. Hentz, and S. L. Delp. Biomechanics of the Steindler flexorplasty surgery: A computer simulation study. J. Hand Surg. [Am.] 28:979–986, 2003.

    Article  Google Scholar 

  46. Smutz, W. P., A. Kongsayreepong, R. E. Hughes, G. Niebur, W. P. Cooney, and K. N. An. Mechanical advantage of the thumb muscles. J. Biomech. 31:565–570, 1998.

    Article  CAS  PubMed  Google Scholar 

  47. Valero-Cuevas, F. J., M. E. Johanson, and J. D. Towles. Towards a realistic biomechanical model of the thumb: The choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36:1019–1030, 2003.

    Article  PubMed  Google Scholar 

  48. van der Helm, F. C. A finite element musculoskeletal model of the shoulder mechanism. J. Biomech. 27:551–569, 1994.

    Article  CAS  PubMed  Google Scholar 

  49. Winter, D. Biomechanics and Motor Control of Human Movement, 2nd ed. New York: Wiley, 1990.

    Google Scholar 

  50. Winters, J. M., and D. G. Kleweno. Effect of initial upper-limb alignment on muscle contributions to isometric strength curves. J. Biomech. 26:143–153, 1993.

    Article  CAS  PubMed  Google Scholar 

  51. Woledge, R. C., N. A. Curtin, and E. Homsher. Energetic aspects of muscle contraction. Monogr. Physiol. Soc. 41:1–357, 1985.

    CAS  PubMed  Google Scholar 

  52. Wu, G., F. C. T. van der Helm, H. E. J. (DirkJan) Veeger, M. Makhsous, P. Van Roy, C. Anglin, J. Nagels, A. R. Karduna, K. McQuade, and X. Wang. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion. Part II. Shoulder, elbow, wrist and hand. J. Biomech. 38:981–992, 2005.

    Article  CAS  PubMed  Google Scholar 

  53. Zajac, F. E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy M. Murray Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzbaur, K.R.S., Murray, W.M. & Delp, S.L. A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control. Ann Biomed Eng 33, 829–840 (2005). https://doi.org/10.1007/s10439-005-3320-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-3320-7

Keywords

Navigation