Skip to main content

Advertisement

Log in

The energy cost of sprint running and the role of metabolic power in setting top performances

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To estimate the energetics and biomechanics of accelerated/decelerated running on flat terrain based on its biomechanical similarity to constant speed running up/down an ‘equivalent slope’ dictated by the forward acceleration (a f).

Methods

Time course of a f allows one to estimate: (1) energy cost of sprint running (C sr), from the known energy cost of uphill/downhill running, and (2) instantaneous (specific) mechanical accelerating power (P sp = a f × speed).

Results

In medium-level sprinters (MLS), C sr and metabolic power requirement (P met = C sr × speed) at the onset of a 100-m dash attain ≈50 J kg−1 m−1, as compared to ≈4 for running at constant speed, and ≈90 W kg−1. For Bolt’s current 100-m world record (9.58 s) the corresponding values attain ≈105 J kg−1 m−1 and ≈200 W kg−1. This approach, as applied by Osgnach et al. (Med Sci Sports Exerc 42:170–178, 2010) to data obtained by video-analysis during soccer games, has been implemented in portable GPS devices (GPEXE©), thus yielding P met throughout the match. Actual O2 consumed, estimated from P met assuming a monoexponential VO2 response (Patent Pending, TV2014A000074), was close to that determined by portable metabolic carts. Peak P sp (W kg−1) was 17.5 and 19.6 for MLS and elite soccer players, and 30 for Bolt. The ratio of horizontal to overall ground reaction force (per kg body mass) was ≈20 % larger, and its angle of application in respect to the horizontal ≈10° smaller, for Bolt, as compared to MLS. Finally, we estimated that, on a 10 % down-sloping track Bolt could cover 100 m in 8.2 s.

Conclusions

The above approach can yield useful information on the bioenergetics and biomechanics of accelerated/decelerated running.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a(t):

Acceleration at time t

a f :

Forward acceleration

aLa:

Alactic oxygen debt

C 0 :

Energy cost of running at constant speed on flat terrain (J kg−1 m−1)

COM:

Centre of mass

C r :

Energy cost of running (J kg−1 m−1)

C sr :

Energy cost of sprint running (J kg−1 m−1)

Ean:

Anaerobic energy

ED:

Equivalent distance: distance covered running at constant speed on flat terrain, for a given energy expenditure

EDI:

Equivalent Distance Index: ratio between ED and actual distance covered

EM:

Equivalent body mass

ES:

Equivalent slope = tan (90 − α)

F :

Force

F acc :

Force acting on the subject during accelerated running: M g

F cost :

Force acting on the subject during constant speed running: M g

g :

Acceleration of gravity

g′:

Vectorial sum of af and g: \(g^{\prime} = \sqrt {a_{f}^{2} + g^{2} }\)

H :

Horizontal

i :

Incline of the terrain

k :

Constant relating mechanical work against the air resistance (per unit body mass) and speed squared (≈0.0025 J s2 kg−1 m−3)

M :

Body mass

P g :

Mechanical power against gravity

P req :

Metabolic power requirement (in equivalent oxygen units)

P sp :

Specific mechanical power

P tot :

Total mechanical power

T :

Terrain

v(f):

Final velocity

v(t):

Velocity at time t

VO2 :

Oxygen consumption (ml kg−1 min−1 or W kg−1)

VO2 (s):

Oxygen consumption at steady state

VO2 (t):

Oxygen consumption at time t

VO2eff:

Actual oxygen consumption

VO2max:

Maximal oxygen consumption

VO2T:

Theoretical oxygen consumption

v v :

Vertical velocity

α :

Angle between T and H

References

  • Antonutto G, di Prampero PE (1995) The concept of lactate threshold. A short review. J Sports Med Phys Fitness 35:6–12

    CAS  PubMed  Google Scholar 

  • Arsac LM (2002) Effects of altitude on the energetics of human best performances in 100-m running: a theoretical analysis. Eur J Appl Physiol 87:78–84

    Article  PubMed  Google Scholar 

  • Arsac LM, Locatelli E (2002) Modelling the energetics of 100-m running by using speed curves of world champions. J Appl Physiol 92:1781–1788

    PubMed  Google Scholar 

  • Beneke R, Taylor MJD (2010) What gives Bolt the edge: A.V. Hill knew it already. J Biomech 43:2241–2243

    Article  PubMed  Google Scholar 

  • Buglione A, di Prampero PE (2013) The energy cost of shuttle running. Eur J Appl Physiol 113:1535–1543

    Article  PubMed  Google Scholar 

  • Capelli C, Cautero M, Pogliaghi S (2011) Algorithms, modelling and VO2 kinetics. Eur J Appl Physiol 111:331–342

    Article  PubMed  Google Scholar 

  • Cavagna GA, Kaneko M (1977) Mechanical work and efficiency in level walking and running. J Physiol 268:467–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cavagna GA, Komarek L, Mazzoleni S (1971) The mechanics of sprint running. J Physiol 217:709–721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222

    Article  PubMed  Google Scholar 

  • di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7:55–72

    Article  PubMed  Google Scholar 

  • di Prampero PE, Piiper J (2003) Effects of shortening velocity and of oxygen consumption on efficiency of contraction in dog gastrocnemius. Eur J Appl Physiol 90:270–274

    Article  PubMed  Google Scholar 

  • di Prampero PE, Piñera Limas F, Sassi G (1970) Maximal muscular power, aerobic and anaerobic, in 116 athletes performing at the XIXth Olympic Games in Mexico. Ergonomics 13:665–674

    Article  PubMed  Google Scholar 

  • di Prampero PE, Capelli C, Pagliaro P, Antonutto G, Girardis M, Zamparo P, Soule RG (1993) Energetics of best performances in middle-distance running. J Appl Physiol 74:2318–2324

    Article  PubMed  Google Scholar 

  • di Prampero PE, Fusi S, Sepulcri L, Morin JB, Belli A, Antonutto G (2005) Sprint running: a new energetic approach. J Exp Biol 208:2809–2816

    Article  PubMed  Google Scholar 

  • Fenn WO (1930a) Frictional and kinetic factors in the work of sprint running. Am J Physiol 92:583–611

    CAS  Google Scholar 

  • Fenn WO (1930b) Work against gravity and work due to velocity changes in running. Am J Physiol 93:433–462

    Google Scholar 

  • Hernandez Gomez JJ, Marquina V, Gomez RW (2013) On the performance of Usain Bolt in the 100 m sprint. Eur J Phys 34:1227–1233

    Article  Google Scholar 

  • Hoogkamer W, Taboga P, Kram R (2014) Applying the cost of generating force hypothesis to uphill running. PeerJ 2:e482. doi:10.7717/peerj.482

    Article  PubMed Central  PubMed  Google Scholar 

  • Kersting UG (1998) Biomechanical analysis of the sprinting events. In: Brüggemann G-P, Kszewski D, Müller H (eds) Biomechanical research project Athens 1997. Final report. Meyer & Meyer Sport, Oxford, pp 12–61

  • Lacour JR, Bourdin M (2015). Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol (in press)

  • Margaria R (1938) Sulla fisiologia e specialmente sul consumo energetico della marcia e della corsa a varia velocità ed inclinazione del terreno. Atti Acc Naz Lincei 6:299–368

    Google Scholar 

  • Margaria R, Aghemo P, Rovelli E (1965) Measurement of muscular power (anaerobic) in man. J Appl Physiol 21:1662–1664

    Google Scholar 

  • Margaria R, di Prampero PE, Derevenco P, Aghemo P, Mariani M (1971) Effect of a steady state exercise on maximal anaerobic power in man. J Appl Physiol 30:885–889

    CAS  PubMed  Google Scholar 

  • Mero A, Komi PV, Gregor RJ (1992) Biomechanics of sprint running. A review. Sports Med 13:376–392

    Article  CAS  PubMed  Google Scholar 

  • Minetti AE, Ardigò LP, Saibene F (1994) Mechanical determinants of the minimum energy cost of gradient running in humans. J Exp Biol 195:211–225

    CAS  PubMed  Google Scholar 

  • Minetti AE, Moia C, Roi GS, Susta D, Ferretti G (2002) Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol 93:1039–1046

    PubMed  Google Scholar 

  • Minetti AE, Gaudino P, Seminati E, Cazzola D (2012) The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles. J Appl Physiol 114:498–503

    Article  PubMed  Google Scholar 

  • Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR (2012) Mechanical determinants of 100-m sprint running. Eur J Appl Physiol 112:3921–3930

    Article  PubMed  Google Scholar 

  • Murase Y, Hoshikawa T, Yasuda N, Ikegami Y, Matsui H (1976) Analysis of the changes in progressive speed during 100-meter dash. In: Komi PV (ed) Biomechanics V-B. University Park Press, Baltimore, pp 200–207

    Google Scholar 

  • Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE (2010) Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc 42:170–178

    Article  PubMed  Google Scholar 

  • Plamondon A, Roy B (1984) Cinématique et cinétique de la course accélérée. Can J Appl Sport Sci 9:42–52

    CAS  PubMed  Google Scholar 

  • Pugh LGCE (1970) Oxygen intake in track and treadmill running with observations on the effect of air resistance. J Physiol Lond 207:823–835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stølen T, Chamari K, Castagna C, Wisløff U (2005) Physiology of soccer: an update. Sports Med 35(6):501–536

    Article  PubMed  Google Scholar 

  • Summers RL (1997) Physiology and biophysics of 100-m sprint. News Physiol Sci 12:131–136

    Google Scholar 

  • Tam E, Rossi H, Moia C, Berardelli C, Rosa G, Capelli C, Ferretti G (2012) Energetics of running in top-level marathon runners from Kenya. Eur J Appl Physiol. doi:10.1007/s00421-012-2357-1

    PubMed  Google Scholar 

  • Taylor MJD, Beneke R (2012) Spring mass characteristics of the fastest men on Earth. Int J Sports Med 33:667–670

    Article  CAS  PubMed  Google Scholar 

  • van Ingen Schenau GJ, Jacobs R, de Koning J (1991) Can cycle power predict sprint running performance? Eur J Appl Physiol 63:255–260

    Article  Google Scholar 

  • van Ingen Schenau GJ, de Koning JJ, de Groot G (1994) Optimization of sprinting performance in running, cycling and speed skating. Sports Med 17:259–275

    Article  PubMed  Google Scholar 

  • Ward-Smith AJ, Radford PF (2000) Investigation of the kinetics of anaerobic metabolism by analysis of the performance of elite sprinters. J Biomech 33:997–1004

    Article  CAS  PubMed  Google Scholar 

  • Williams SB, Tan H, Usherwood JR, Wilson AM (2009) Pitch then power: limitations to acceleration in quadrupeds. Biol Lett 5:610–613

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson AM, Lowe JC, Roskilly K, Hudson PE, Gobalek KA, McNutt JW (2013) Locomotion dynamics of hunting in wild cheetahs. Nature 498:185–189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support of Udinese Calcio SpA and of the Lions Club Udine Duomo is gratefully acknowledged.

Conflict of interest

The authors declare to be interested in the commercial development and utilisation of the system GPEXE© (Exelio srl, Udine, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro E. di Prampero.

Additional information

Communicated by Nigel A.S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

di Prampero, P.E., Botter, A. & Osgnach, C. The energy cost of sprint running and the role of metabolic power in setting top performances. Eur J Appl Physiol 115, 451–469 (2015). https://doi.org/10.1007/s00421-014-3086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3086-4

Keywords

Navigation