Skip to main content
Log in

Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To compare the effects of short-term maximal (MST) vs. explosive (EST) strength training on maximal and explosive force production, and assess the neural adaptations underpinning any training-specific functional changes.

Methods

Male participants completed either MST (n = 9) or EST (n = 10) for 4 weeks. In training participants were instructed to: contract as fast and hard as possible for ~1 s (EST); or contract progressively up to 75 % maximal voluntary force (MVF) and hold for 3 s (MST). Pre- and post-training measurements included recording MVF during maximal voluntary contractions and explosive force at 50-ms intervals from force onset during explosive contractions. Neuromuscular activation was assessed by recording EMG RMS amplitude, normalised to a maximal M-wave and averaged across the three superficial heads of the quadriceps, at MVF and between 0–50, 0–100 and 0–150 ms during the explosive contractions.

Results

Improvements in MVF were significantly greater (P < 0.001) following MST (+21 ± 12 %) than EST (+11 ± 7 %), which appeared due to a twofold greater increase in EMG at MVF following MST. In contrast, early phase explosive force (at 100 ms) increased following EST (+16 ± 14 %), but not MST, resulting in a time × group interaction effect (P = 0.03), which appeared due to a greater increase in EMG during the early phase (first 50 ms) of explosive contractions following EST (P = 0.052).

Conclusions

These results provide evidence for distinct neuromuscular adaptations after MST vs. EST that are specific to the training stimulus, and demonstrate the independent adaptability of maximal and explosive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

EMG0–50 :

Electromyography recorded during explosive contractions over a time period denoted in subscript

EMGMVF :

Electromyography recorded at MVF

EST:

Explosive strength training

F 50 :

Explosive force recorded at a discrete time point from force onset denoted in subscript

M max :

Maximal M-wave

MST:

Maximal strength training

MVC:

Maximal voluntary contraction

MVF:

Maximal voluntary force

M-wave:

Compound muscle action potential

RF:

Rectus femoris

RMS:

Root mean square

VL:

Vastus lateralis

VM:

Vastus medialis

References

  • Ada L, Canning C, Dwyer T (2000) Effect of muscle length on strength and dexterity after stroke. Clin Rehabil 14:55–61

    Article  CAS  PubMed  Google Scholar 

  • Allison GT (2003) Trunk muscle onset detection technique for EMG signals with ECG artefact. J Electromyogr Kinesiol 13:209–216

    Article  CAS  PubMed  Google Scholar 

  • Andersen LL, Aagaard P (2006) Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol 96:46–52. doi:10.1007/s00421-005-0070-z

    Article  PubMed  Google Scholar 

  • Andersen LL, Andersen JL, Zebis MK, Aagaard P (2010) Early and late rate of force development: differential adaptive responses to resistance training? Scand J Med Sci Sports 20:162–169. doi:10.1111/j.1600-0838.2009.00933.x

    Article  Google Scholar 

  • Barry BK, Warman GE, Carson RG (2005) Age-related differences in rapid muscle activation after rate of force development training of the elbow flexors. Exp Brain Res 162:122–132. doi:10.1007/s00221-004-2127-3

    Article  PubMed  Google Scholar 

  • Bojsen-Moller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P (2005) Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol 99:986–994. doi:10.1152/japplphysiol.01305.2004

    Article  PubMed  Google Scholar 

  • Buckthorpe MW, Hannah R, Pain MTG, Folland JP (2012) Reliability of neuromuscular measurements during explosive isometric contractions, with special reference to electromyography normalization techniques. Muscle Nerve 46:566–576. doi:10.1002/mus.23322

    Article  PubMed  Google Scholar 

  • Crewther B, Cronin J, Keogh J (2005) Possible stimuli for strength and power adaptation: acute mechanical responses. Sports Med 35:967–989

    Article  PubMed  Google Scholar 

  • de Ruiter CJ, Van Leeuwen D, Heijblom A, Bobbert MF, de Haan A (2006) Fast unilateral isometric knee extension torque development and bilateral jump height. Med Sci Sports Exerc 38:1843–1852. doi:10.1249/01.mss.0000227644.14102.50

    Article  PubMed  Google Scholar 

  • de Ruiter CJ, Hutter V, Icke C et al (2012) The effects of imagery training on fast isometric knee extensor torque development. J Sports Sci 30:166–174. doi:10.1080/02640414.2011.627369

    Article  PubMed  Google Scholar 

  • Del Balso C, Cafarelli E (2007) Adaptations in the activation of human skeletal muscle induced by short-term isometric resistance training. J Appl Physiol 103:402–411. doi:10.1152/japplphysiol.00477.2006

    Article  PubMed  Google Scholar 

  • Domire ZJ, Boros RL, Hashemi J (2011) An examination of possible quadriceps force at the time of anterior cruciate ligament injury during landing: a simulation study. J Biomech 44:1630–1632. doi:10.1016/j.jbiomech.2011.03.001

    Article  PubMed  Google Scholar 

  • Duchateau J, Semmler JG, Enoka RM (2006) Training adaptations in the behavior of human motor units. J Appl Physiol 101:1766–1775. doi:10.1152/japplphysiol.00543.2006

    Article  PubMed  Google Scholar 

  • Faulkner JA, Larkin LM, Claflin DR, Brooks SV (2007) Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol 34:1091–1096. doi:10.1111/j.1440-1681.2007.04752.x

    Article  CAS  PubMed  Google Scholar 

  • Folland JP, Williams AG (2007) The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med 37:145–168

    Article  PubMed  Google Scholar 

  • Garcia-Pallares J, Lopez-Gullon JM, Muriel X, Diaz A, Izquierdo M (2011) Physical fitness factors to predict male Olympic wrestling performance. Eur J Appl Physiol 111:1747–1758. doi:10.1007/s00421-010-1809-8

    Article  PubMed  Google Scholar 

  • Gruber M, Gruber SB, Taube W, Schubert M, Beck SC, Gollhofer A (2007) Differential effects of ballistic versus sensorimotor training on rate of force development and neural activation in humans. J Strength Cond Res 21:274–282. doi:10.1519/R-20085.1

    Article  PubMed  Google Scholar 

  • Hakkinen K, Keskinen KL (1989) Muscle cross-sectional area and voluntary force production characteristics in elite strength- and endurance-trained athletes and sprinters. Eur J Appl Physiol Occup Physiol 59:215–220

    Article  CAS  PubMed  Google Scholar 

  • Jones DA, Parker DF (1989) Development of a portable strain gauge to measure human muscle isometric strength. J Physiol 145:11P

    Google Scholar 

  • Jones DA, Rutherford OM (1987) Human muscle strength training: the effects of three different regimens and the nature of the resultant changes. J Physiol 391:1–11

    CAS  PubMed  Google Scholar 

  • Jurimae J, Abernethy PJ, Blake K, McEniery MT (1996) Changes in the myosin heavy chain isoform profile of the triceps brachii muscle following 12 weeks of resistance training. Eur J Appl Physiol Occup Physiol 74:287–292

    Article  CAS  PubMed  Google Scholar 

  • Kamen G, Knight CA (2004) Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci 59:1334–1338

    Article  PubMed  Google Scholar 

  • Knight CA, Kamen G (2008) Relationships between voluntary activation and motor unit firing rate during maximal voluntary contractions in young and older adults. Eur J Appl Physiol 103:625–630. doi:10.1007/s00421-008-0757-z

    Article  PubMed  Google Scholar 

  • Kubo K, Kanehisa H, Ito M, Fukunaga T (2001) Effects of isometric training on the elasticity of human tendon structures in vivo. J Appl Physiol 91:26–32

    CAS  PubMed  Google Scholar 

  • Moretti DV, Babiloni F, Carducci F et al (2003) Computerized processing of EEG–EOG–EMG artifacts for multi-centric studies in EEG oscillations and event-related potentials. Int J Psychophysiol 47:199–216

    Article  CAS  PubMed  Google Scholar 

  • Pain MTG, Hibbs A (2007) Sprint starts and the minimum auditory reaction time. J Sports Sci 25:79–86. doi:10.1080/02640410600718004

    Article  PubMed  Google Scholar 

  • Pijnappels M, van der Burg PJ, Reeves ND, van Dieen JH (2008) Identification of elderly fallers by muscle strength measures. Eur J Appl Physiol 102:585–592. doi:10.1007/s00421-007-0613-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Pulkovski N, Schenk P, Maffiuletti NA, Mannion AF (2008) Tissue Doppler imaging for detecting onset of muscle activity. Muscle Nerve 37:638–649. doi:10.1002/mus.20996

    Article  PubMed  Google Scholar 

  • Quarrie KL, Wilson BD (2000) Force production in the rugby union scrum. J Sports Sci 18:237–246. doi:10.1080/026404100364974

    Article  CAS  PubMed  Google Scholar 

  • Rich C, Cafarelli E (2000) Submaximal motor unit firing rates after 8 wk of isometric resistance training. Med Sci Sports Exerc 32:190–196

    Article  CAS  PubMed  Google Scholar 

  • Sahaly R, Vandewalle H, Driss T, Monod H (2001) Maximal voluntary force and rate of force development in humans—importance of instruction. Eur J Appl Physiol 85:345–350

    Article  CAS  PubMed  Google Scholar 

  • Sale DG (2003) Neural adaptations to strength training. In: Komi PV (ed) Strength and power in sport, 2nd edn. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Schantz P, Randall-Fox E, Hutchison W, Tyden A, Astrand PO (1983) Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiol Scand 117:219–226

    Article  CAS  PubMed  Google Scholar 

  • Seynnes OR, de Boer M, Narici MV (2007) Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 102:368–373. doi:10.1152/japplphysiol.00789.2006

    Article  CAS  PubMed  Google Scholar 

  • Staron RS, Karapondo DL, Kraemer WJ et al (1994) Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 76:1247–1255

    CAS  PubMed  Google Scholar 

  • Suetta C, Aagaard P, Rosted A et al (2004) Training-induced changes in muscle CSA, muscle strength, EMG, and rate of force development in elderly subjects after long-term unilateral disuse. J Appl Physiol 97:1954–1961. doi:10.1152/japplphysiol.01307.2003

    Article  PubMed  Google Scholar 

  • Thorstensson A, Karlsson J, Viitasalo JH, Luhtanen P, Komi PV (1976) Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand 98:232–236

    Article  CAS  PubMed  Google Scholar 

  • Tillin NA, Jimenez-Reyes P, Pain MTG, Folland JP (2010) Neuromuscular performance of explosive power athletes versus untrained individuals. Med Sci Sports Exerc 42:781–790. doi:10.1249/MSS.0b013e3181be9c7eER

    Article  PubMed  Google Scholar 

  • Tillin NA, Pain MTG, Folland JP (2011) Short-term unilateral resistance training affects the agonist–antagonist but not the force–agonist activation relationship. Muscle Nerve 43:375–384. doi:10.1002/mus.21885

    Article  PubMed  Google Scholar 

  • Tillin NA, Pain MTG, Folland JP (2012a) Contraction type influences the human ability to use the available torque capacity of skeletal muscle during explosive efforts. Proc Biol Sci 279:2106–2115. doi:10.1098/rspb.2011.2109

    Article  PubMed Central  PubMed  Google Scholar 

  • Tillin NA, Pain MTG, Folland JP (2012b) Short-term training for explosive strength causes neural and mechanical adaptations. Exp Physiol 97:630–641. doi:10.1113/expphysiol.2011.063040

    Article  PubMed  Google Scholar 

  • Tillin NA, Pain MTG, Folland J (2013a) Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci 31:66–76. doi:10.1080/02640414.2012.720704

    Article  PubMed  Google Scholar 

  • Tillin NA, Pain MTG, Folland JP (2013b) Identification of contraction onset during explosive contractions. Response to Thompson et al. “Consistency of rapid muscle force characteristics: influence of muscle contraction onset detection methodology” (J Electromyogr Kinesiol 2012;22:893–900). J Electromyogr Kinesiol 23:991–994. doi:10.1016/j.jelekin.2013.04.015

    Article  PubMed  Google Scholar 

  • Van Cutsem M, Duchateau J, Hainaut K (1998) Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513:295–305

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere gratitude to: Mark Anthony Curbishley, Josh Bakker-Dyos, Christopher Davison, and Matt Cross for their help during the training and data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neale A. Tillin.

Additional information

Communicated by Alain Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tillin, N.A., Folland, J.P. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Eur J Appl Physiol 114, 365–374 (2014). https://doi.org/10.1007/s00421-013-2781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2781-x

Keywords

Navigation