Skip to main content
Log in

Bone and lean mass inter-arm asymmetries in young male tennis players depend on training frequency

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Professional tennis players (TP) have marked inter-arm asymmetry in bone mass (BMC) and density (BMD). To determine if this asymmetry is influenced by training frequency and volume, we studied 24 young tennis players (mean age 10.6 years, Tanner 1–2), 17 physically active control boys (CG) and ten male professional tennis players. Young TP were divided into two groups depending on the number of training days per week (TP5: 5 days/week, n = 10; TP2: 2 days/week, n = 14). In young TP, the dominant arm (DA) compared to the non-dominant arm (NDA) had greater lean mass (TP5, 13.3 ± 2.0% and TP2, 8.3 ± 1.3%), BMC (TP5, 22.4 ± 4.1% and TP2, 12.1 ± 2.2%), bone area (TP5, 15.6 ± 3.3% and TP2, 7.9 ± 2.2%) and BMD (TP5, 4.6 ± 1.5% and TP2, 3.8 ± 0.6%). Inter-arm asymmetry in lean mass, BMC and bone area was greater in TP5 than TP2, being related to the number of weekly hours devoted to tennis (r = 0.45–52, P < 0.05). No significant differences in lumbar spine or femoral neck BMC or BMD were observed between TP5, TP2 and CG. In professional TP, the DA had 18, 32, 11 and 15% greater lean mass, BMC, bone area and BMD than the NDA. Thus, TP5 had 69% of the inter-arm asymmetry in BMC observed in professional TP and a similar inter-arm asymmetry in bone area, although this comparison may not be generalisable. Young tennis players have increased BMC, bone area and lean mass in dominant arm, which magnitude depends on the number of weekly hours devoted to tennis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bailey DA, Faulkner RA, McKay HA (1996) Growth, physical activity, and bone mineral acquisition. Exerc Sport Sci Rev 24:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, Stuckey S (2002) The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17:2274–2280

    Article  CAS  PubMed  Google Scholar 

  • Calbet JA, Moysi JS, Dorado C, Rodriguez LP (1998) Bone mineral content and density in professional tennis players. Calcif Tissue Int 62:491–496

    Article  CAS  PubMed  Google Scholar 

  • Calbet JA, Dorado C, Diaz-Herrera P, Rodriguez-Rodriguez LP (2001) High femoral bone mineral content and density in male football (soccer) players. Med Sci Sports Exerc 33:1682–1687

    Article  CAS  PubMed  Google Scholar 

  • Daly RM, Saxon L, Turner CH, Robling AG, Bass SL (2004) The relationship between muscle size and bone geometry during growth and in response to exercise. Bone 34:281–287

    Article  CAS  PubMed  Google Scholar 

  • Ducher G, Tournaire N, Meddahi-Pelle A, Benhamou CL, Courteix D (2006) Short-term and long-term site-specific effects of tennis playing on trabecular and cortical bone at the distal radius. J Bone Miner Metab 24:484–490

    Article  PubMed  Google Scholar 

  • Ducher G, Daly RM, Bass SL (2009) Effects of repetitive loading on bone mass and geometry in young male tennis players: a quantitative study using MRI. J Bone Miner Res 24:1686–1692

    Article  PubMed  Google Scholar 

  • Duke PM, Litt IF, Gross RT (1980) Adolescents’ self-assessment of sexual maturation. Pediatrics 66:918–920

    CAS  PubMed  Google Scholar 

  • Freychat P, Belli A, Carret JP, Lacour JR (1996) Relationship between rearfoot and forefoot orientation and ground reaction forces during running. Med Sci Sports Exerc 28:225–232

    CAS  PubMed  Google Scholar 

  • Guadalupe-Grau A, Perez-Gomez J, Olmedillas H, Chavarren J, Dorado C, Santana A, Serrano-Sanchez JA, Calbet JA (2009) Strength training combined with plyometric jumps in adults: sex differences in fat-bone axis adaptations. J Appl Physiol 106:1100–1111

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW, Samaddar T, Pennington C, McCormick J (2006) Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J Bone Miner Res 21:477–483

    Article  CAS  PubMed  Google Scholar 

  • Heinonen A (2001) Biomechanics. In: Khan K, McKay H, Kannus P (eds) Physical activity and bone health. Human Kinetics, New York, pp 23–34

    Google Scholar 

  • Heinonen A, McKay HA, Whittall KP, Forster BB, Khan KM (2001) Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone 29:388–392

    Article  CAS  PubMed  Google Scholar 

  • Ilich JZ, Skugor M, Hangartner T, Baoshe A, Matkovic V (1998) Relation of nutrition, body composition and physical activity to skeletal development: a cross-sectional study in preadolescent females. J Am Coll Nutr 17:136–147

    CAS  PubMed  Google Scholar 

  • Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I (1995) Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123:27–31

    CAS  PubMed  Google Scholar 

  • Kontulainen S, Sievanen H, Kannus P, Pasanen M, Vuori I (2002) Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 17:2281–2289

    Article  PubMed  Google Scholar 

  • Lanyon LE, Magee PT, Baggott DG (1979) The relationship of functional stress and strain to the processes of bone remodelling. An experimental study on the sheep radius. J Biomech 12:593–600

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE, Goodship AE, Pye CJ, MacFie JH (1982) Mechanically adaptive bone remodelling. J Biomech 15:141–154

    Article  CAS  PubMed  Google Scholar 

  • Mackelvie KJ, McKay HA, Khan KM, Crocker PR (2001) A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr 139:501–508

    Article  CAS  PubMed  Google Scholar 

  • MacKelvie KJ, McKay HA, Petit MA, Moran O, Khan KM (2002) Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J Bone Miner Res 17:834–844

    Article  CAS  PubMed  Google Scholar 

  • MacKelvie KJ, Khan KM, Petit MA, Janssen PA, McKay HA (2003) A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics 112:e447

    Article  PubMed  Google Scholar 

  • Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD (1997) Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res 12:1453–1462

    Article  CAS  PubMed  Google Scholar 

  • O’Connor JA, Lanyon LE, MacFie H (1982) The influence of strain rate on adaptive bone remodelling. J Biomech 15:767–781

    Article  PubMed  Google Scholar 

  • Olmedillas H, Sanchis-Moysi J, Fuentes T, Guadalupe-Grau A, Ponce-Gonzalez JG, Morales-Alamo D, Santana A, Dorado C, Calbet JA, Guerra B (2010) Muscle hypertrophy and increased expression of leptin receptors in the musculus triceps brachii of the dominant arm in professional tennis players. Eur J Appl Physiol 108:749–758

    Article  CAS  PubMed  Google Scholar 

  • Ozmun JC, Mikesky AE, Surburg PR (1994) Neuromuscular adaptations following prepubescent strength training. Med Sci Sports Exerc 26:510–514

    CAS  PubMed  Google Scholar 

  • Perez-Gomez J, Olmedillas H, Delgado-Guerra S, Royo IA, Vicente-Rodriguez G, Ortiz RA, Chavarren J, Calbet JA (2008a) Effects of weight lifting training combined with plyometric exercises on physical fitness, body composition, and knee extension velocity during kicking in football. Appl Physiol Nutr Metab 33:501–510

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gomez J, Rodriguez GV, Ara I, Olmedillas H, Chavarren J, Gonzalez-Henriquez JJ, Dorado C, Calbet JA (2008b) Role of muscle mass on sprint performance: gender differences? Eur J Appl Physiol 102:685–694

    Article  PubMed  Google Scholar 

  • Ramsay JA, Blimkie CJ, Smith K, Garner S, MacDougall JD, Sale DG (1990) Strength training effects in prepubescent boys. Med Sci Sports Exerc 22:605–614

    Article  CAS  PubMed  Google Scholar 

  • Sanchis Moysi J (2004) Strength training maintains muscle mass and improves maximal dynamic strength in two professional tennis players. In: Adrian Lees J-FK (ed) Science and racket sports III. Routledge, London

    Google Scholar 

  • Sanchis-Moysi J, Dorado C, Olmedillas H, Serrano-Sanchez JA, Calbet JA (2010) Bone mass in prepubertal tennis players. Int J Sports Med. doi:10.1055/s-0030-1248331

  • Sanchís-Moysi J, Guadalupe-Grau A, Guerra S, Olmedillas H, Bernales O, Dorado C, Calbet JAL (2008) Muscle fiber type distribution and fiber size of triceps brachialis in elite tennis players. In: Lees A, Carbello D, Torres G (eds) Science and racket sports I. Taylor And Francis Group, Routledge, London, pp 1–6

    Google Scholar 

  • Sanchís-Moysi J, Idoate F, Olmedillas H, Guadalupe-Grau A, Alayón S, Carreras A, Dorado C, Calbet JAL (2009) The upper extremity of the professional tennis player: muscle volumes, fiber type distribution and muscle strength. Scand J Med Sci Sports. doi:10.1111/j.1600-0838.2009.00969.x

  • Seeman E, Karlsson MK, Duan Y (2000) On exposure to anorexia nervosa, the temporal variation in axial and appendicular skeletal development predisposes to site-specific deficits in bone size and density: a cross-sectional study. J Bone Miner Res 15:2259–2265

    Article  CAS  PubMed  Google Scholar 

  • Slemenda CW, Reister TK, Hui SL, Miller JZ, Christian JC, Johnston CC Jr (1994) Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr 125:201–207

    Article  CAS  PubMed  Google Scholar 

  • Tanner JM (1962) Growth at adolescence. Blackwell, Oxford

    Google Scholar 

  • Vicente-Rodriguez G (2006) How does exercise affect bone development during growth? Sports Med Auckl NZ 36:561–569

    Article  Google Scholar 

  • Vicente-Rodriguez G, Ara I, Perez-Gomez J, Serrano-Sanchez JA, Dorado C, Calbet JA (2004) High femoral bone mineral density accretion in prepubertal soccer players. Med Sci Sports Exerc 36:1789–1795

    Article  PubMed  Google Scholar 

  • Vicente-Rodriguez G, Ara I, Perez-Gomez J, Dorado C, Calbet JA (2005) Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Br J Sports Med 39:611–616

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Ministerio de Educación y Ciencia (DEP2006-56076-C06-04/ACTI) and FEDER, Consejería de Educación, Cultura y Deportes del Gobierno de Canarias (2006/179 0001 and FEDER). The authors thank José Navarro de Tuero and Lester Poxon for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. L. Calbet.

Additional information

Communicated by Jean-René Lacour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchis-Moysi, J., Dorado, C., Olmedillas, H. et al. Bone and lean mass inter-arm asymmetries in young male tennis players depend on training frequency. Eur J Appl Physiol 110, 83–90 (2010). https://doi.org/10.1007/s00421-010-1470-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1470-2

Keywords

Navigation