Skip to main content
Log in

Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 17 October 2007

Abstract

Near-infrared spectroscopy (NIRS) allows non-invasive monitoring of central and peripheral changes in oxygenation during exercise and may provide valuable insight into the factors affecting fatigue. This study aimed to explore the changes in oxygenation of prefrontal cortex and active muscle tissue as limiting factors of incremental exercise performance in trained cyclists. Thirteen trained healthy subjects (mean ± SE: age 24.9 ± 1.5 years, body mass 70.1 ± 1.2 kg, training 6.1 ± 0.9 h week−1) performed a progressive maximal exercise to exhaustion on a cycling ergometer. Prefrontal cortex (Cox) and vastus lateralis muscle (Mox) oxygenation were measured simultaneously by NIRS throughout the exercise. Maximal voluntary isometric knee torques and quadriceps neuromuscular fatigue (M-wave properties and voluntary activation ratio) were evaluated before and after exercise. Maximal power output and oxygen consumption were 380.8 ± 7.9 W and 75.0 ± 2.2 ml min−1 kg−1, respectively. Mox decreased significantly throughout exercise while Cox increased in the first minutes of exercise but decreased markedly from the workload corresponding to the second ventilatory threshold up to exhaustion (P < 0.05). No significant difference was noted 6 min after maximal exercise in either the voluntary activation ratio or the M-wave properties. These findings are compatible with the notion that supraspinal modulation of motor output precedes exhaustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amman M, Romer LM, Subudhi AW, Pegelow1 DF, Dempsey JA (2007) Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. J Physiol 581:389–403

    Article  Google Scholar 

  • Belardinelli R, Barstow TJ, Porszasz J, Wasserman K (1995) Changes in skeletal muscle oxygenation during incremental exercise measured with near infrared spectroscopy. Eur J Appl Physiol Occup Physiol 70:487–492

    Article  PubMed  CAS  Google Scholar 

  • Bentley DJ, Smith PA, Davie AJ, Zhou S (2000) Muscle activation of the knee extensors following high intensity endurance exercise in cyclists. Eur J Appl Physiol 81:297–302

    Article  PubMed  CAS  Google Scholar 

  • Bhambhani Y, Malik R, Mookerjee S (2007) Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respir Physiol Neurobiol 156:196–202

    Article  PubMed  Google Scholar 

  • Colier WN, Quaresima V, Oeseburg B, Ferrari M (1999) Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot. Exp Brain Res 129:457–461

    Article  PubMed  CAS  Google Scholar 

  • Davis JA (1985) Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 17:6–21

    PubMed  CAS  Google Scholar 

  • De Blasi RA, Fantini S, Franceschini MA, Ferrari M, Gratton E (1995) Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer. Med Biol Eng Comput 33:228–230

    Article  PubMed  Google Scholar 

  • Duncan A, Meek JH, Clemence M, Elwell CE, Tyszczuk L, Cope M, Delpy DT (1995) Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Phys Med Biol 40:295–304

    Article  PubMed  CAS  Google Scholar 

  • Duncan A, Meek J, Clemence M, Elwell C, Fallon P, Tyszczuk L, Cope M, Delpy D (1996) Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy. Pediatr Res 39:889–894

    Article  PubMed  CAS  Google Scholar 

  • Edwards MR, Shoemaker JK, Hughson RL (2002) Dynamic modulation of cerebrovascular resistance as an index of autoregulation under tilt and controlled PET(CO(2)). Am J Physiol Regul Integr Comp Physiol 283:R653–R662

    PubMed  CAS  Google Scholar 

  • Elwell CE, Cope M, Edwards AD, Wyatt JS, Delpy DT, Reynolds EO (1994) Quantification of adult cerebral hemodynamics by near-infrared spectroscopy. J Appl Physiol 77:2753–2760

    PubMed  CAS  Google Scholar 

  • Ferrari M, Mottola L, Quaresima V (2004) Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol 29:463–487

    PubMed  Google Scholar 

  • Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

    PubMed  CAS  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    PubMed  CAS  Google Scholar 

  • Gonzalez-Alonso J, Calbet JA (2003) Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation 107:824–830

    Article  PubMed  Google Scholar 

  • Gonzalez-Alonso J, Dalsgaard MK, Osada T, Volianitis S, Dawson EA, Yoshiga CC, Secher NH (2004) Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol (Lond) 557:331–342

    Article  CAS  Google Scholar 

  • Greisen G (2006) Is near-infrared spectroscopy living up to its promises? Semin Fetal Neonatal Med 11:498–502

    Article  PubMed  Google Scholar 

  • Hoshi Y, Kobayashi N, Tamura M (2001) Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol 90:1657–1662

    PubMed  CAS  Google Scholar 

  • Hug F, Faucher M, Kipson N, Jammes Y (2003) EMG signs of neuromuscular fatigue related to the ventilatory threshold during cycling exercise. Clin Physiol Funct Imaging 23:208–284

    Article  PubMed  Google Scholar 

  • Hug F, Decherchi P, Marqueste T, Jammes Y (2004) EMG versus oxygen uptake during cycling exercise in trained and untrained subjects. J Electromyogr Kinesiol 14:187–195

    Article  PubMed  Google Scholar 

  • Ide K, Horn A, Secher NH (1999) Cerebral metabolic response to submaximal exercise. J Appl Physiol 87:1604–1608

    PubMed  CAS  Google Scholar 

  • Jöbsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  PubMed  Google Scholar 

  • Kayser B (2003) Exercise starts and ends in the brain. Eur J Appl Physiol 90:411–419

    Article  PubMed  Google Scholar 

  • Krawczyk DC (2002) Contributions of the prefrontal cortex to the neural basis of human decision making. Neurosci Biobehav Rev 26:631–664

    Article  PubMed  Google Scholar 

  • Liu JZ, Shan ZY, Zhang LD, Sahgal V, Brown RW, Yue GH (2003) Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: an fMRI study. J Neurophysiol 90:300–312

    Article  PubMed  Google Scholar 

  • Martin V, Millet GY, Martin A, Deley G, Lattier G (2004) Assessment of low-frequency fatigue with two methods of electrical stimulation. J Appl Physiol 97:1923–1929

    Article  PubMed  CAS  Google Scholar 

  • Matsushita K, Homma S, Okada E (1998) Influence of adipose tissue on muscle oxygenation measurement with NIRS instrument. Proc Soc Photo Opt Instrum Eng 3194:159–165

    Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  PubMed  CAS  Google Scholar 

  • Millet GY, Lepers R (2004) Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med 34:105–116

    Article  PubMed  Google Scholar 

  • Nielsen HB, Boushel R, Madsen P, Secher NH (1999) Cerebral desaturation during exercise reversed by O2 supplementation. Am J Physiol Heart Circ Physiol 277:H1045–H1052

    CAS  Google Scholar 

  • Noakes TD, St Clair Gibson A, Lambert EV (2005) From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sports Med 39:120–124

    Article  PubMed  CAS  Google Scholar 

  • Obrig H, Hirth C, Junge-Hulsing JG, Doge C, Wolf T, Dirnagl U, Villringer A (1996) Cerebral oxygenation changes in response to motor stimulation. J Appl Physiol 81:1174–1183

    PubMed  CAS  Google Scholar 

  • Ogoh S, Dalsgaard MK, Yoshiga CC, Dawson EA, Keller DM, Raven PB, Secher NH (2005) Dynamic cerebral autoregulation during exhaustive exercise in humans. Am J Physiol Heart Circ Physiol 288:H1461–H1467

    Article  PubMed  CAS  Google Scholar 

  • Radegran G (1997) Ultrasound Doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans. J Appl Physiol 83:1383–1388

    PubMed  CAS  Google Scholar 

  • Rasmussen P, Dawson EA, Nybo L, van Lieshout JJ, Secher NH, Gjedde A (2007) Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J Cereb Blood Flow Metab 27:1082–1093

    PubMed  CAS  Google Scholar 

  • Rotto DM, Kaufman MP (1988) Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. J Appl Physiol 64:2306–2313

    PubMed  CAS  Google Scholar 

  • Sahlin K, Tonkonogi M, Soderlund K (1998) Energy supply and muscle fatigue in humans. Acta Physiol Scand 162:261–262

    Article  PubMed  CAS  Google Scholar 

  • Sandiford SD, Green HJ, Duhamel TA, Schertzer JD, Perco JD, Ouyang J (2005) Muscle Na–K-pump and fatigue responses to progressive exercise in normoxia and hypoxia. Am J Physiol Regul Integr Comp Physiol 289:R441-R449

    PubMed  CAS  Google Scholar 

  • Shibuya K, Tachi M (2006) Oxygenation in the motor cortex during exhaustive pinching exercise. Respir Physiol Neurobiol 153:261–266

    Article  PubMed  Google Scholar 

  • Shibuya K, Tanaka J, Kuboyama N, Murai S, Ogaki T (2004) Cerebral cortex activity during supramaximal exhaustive exercise. J Sports Med Phys Fitness 44:215–219

    PubMed  CAS  Google Scholar 

  • Shield A, Zhou S (2004) Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med 34:253–267

    Article  PubMed  Google Scholar 

  • Sogaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL (2006) The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J Physiol 573:511–523

    Article  PubMed  Google Scholar 

  • St Clair Gibson A, Noakes TD (2004) Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sports Med 38:797–806

    Article  PubMed  CAS  Google Scholar 

  • Subudhi AW, Dimmen AC, Roach RC (2007) Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol 103:177–183

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, Kubota K (2004) Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage 23:1020–1026

    Article  PubMed  Google Scholar 

  • Taylor JL, Allen GM, Butler JE, Gandevia SC (2000) Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. J Appl Physiol 89:305–313

    PubMed  CAS  Google Scholar 

  • Taylor JL, Todd G, Gandevia SC (2006) Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol 33:400–405

    Article  PubMed  CAS  Google Scholar 

  • Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, Volpe JJ (2000) Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 106:625–632

    Article  PubMed  CAS  Google Scholar 

  • van der Zee P, Cope M, Arridge SR, Essenpreis M, Potter LA, Edwards AD, Wyatt JS, McCormick DC, Roth SC, Reynolds EO et al (1992) Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing. Adv Exp Med Biol 316:143–153

    PubMed  Google Scholar 

  • Vollestad NK, Sejersted OM, Bahr R, Woods JJ, Bigland-Ritchie B (1988) Motor drive and metabolic responses during repeated submaximal contractions in humans. J Appl Physiol 64:1421–1427

    PubMed  CAS  Google Scholar 

  • Vovk A, Cunningham DA, Kowalchuk JM, Paterson DH, Duffin J (2002) Cerebral blood flow responses to changes in oxygen and carbon dioxide in humans. Can J Physiol Pharmacol 80:819–827

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We wish to thank Catherine Carmini for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perrey Stephane.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00421-007-0595-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, R., Stephane, P. Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol 102, 153–163 (2008). https://doi.org/10.1007/s00421-007-0568-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0568-7

Keywords

Navigation