Skip to main content

Advertisement

Log in

Representation of virtual arm movements in precuneus

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Arm movements can easily be adapted to different biomechanical constraints. However, the cortical representation of the processing of visual input and its transformation into motor commands remains poorly understood. In a visuo-motor dissociation paradigm, subjects were presented with a 3-D computer-graphical representation of a human arm, presenting movements of the subjects’ right arm either as right or left arm. In order to isolate possible effects of coordinate transformations, coordinate mirroring at the body midline was implemented independently. In each of the resulting four conditions, 10 normal, right-handed subjects performed three runs of circular movements, while being scanned with O15-Butanol-PET. Kinematic analysis included orientation and accuracy of a fitted ellipsoid trajectory. Imaging analysis was performed with SPM 99 with activations threshold at P < 0.0001 (not corrected). The shape of the trajectory was dependent on the laterality of the arm, irrespective of movement mirroring, and accompanied by a robust activation difference in the contralateral precuneus. Movement mirroring decreased movement accuracy, which was related to increased activation in the left insula. Those two movement conditions that cannot be observed in reality were related to an activation focus at the left middle temporal gyrus, but showed no influence on movement kinematics. These findings demonstrate the prominent role of the precuneus for mediating visuo-motor transformations and have implications for the use of mirror therapy and virtual reality techniques, especially avatars, such as Nintendo Wii in neurorehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamovich SV, August K, Merians A, Tunik E (2009) A virtual reality-based system integrated with fmri to study neural mechanisms of action observation-execution: a proof of concept study. Restor Neurol Neurosci 27:209–223

    CAS  PubMed  Google Scholar 

  • Altschuler E (2005) Interaction of vision and movement via a mirror. Perception 34:1153–1161

    Article  PubMed  Google Scholar 

  • Altschuler EL, Wisdom SB, Stone L, Foster C, Galasko D, Llewellyn DM, Ramachandran VS (1999) Rehabilitation of hemiparesis after stroke with a mirror. Lancet 353:2035–2036

    Article  CAS  PubMed  Google Scholar 

  • Bawa P, Hamm J, Dhillon P, Gross P (2004) Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects. Exp Brain Res 158:385–390

    Article  CAS  PubMed  Google Scholar 

  • Binkofski F, Buccino G, Dohle C, Seitz RJ, Freund HJ (1999) Mirror agnosia and mirror ataxia constitute different parietal lobe disorders. Ann Neurol 46:51–61

    Article  CAS  PubMed  Google Scholar 

  • Binkofski F, Butler AJ, Buccino G, Heide W, Fink GR, Freund H-J, Seitz RJ (2003) Mirror apraxia affects the peripersonal mirror space. a combined lesion and cerebral activation study. Exp Brain Res 153:210–219

    Article  PubMed  Google Scholar 

  • Bonda E, Petrides M, Frey S, Evans A (1995) Neural correlates of mental transformations of the body-in-space. Proc Natl Acad Sci USA 92:11180–11184

    Article  CAS  PubMed  Google Scholar 

  • Brefczynski JA, DeYoe EA (1999) A physiological correlate of the ‘spotlight’ of visual attention. Nat Neurosci 2:370–374

    Article  CAS  PubMed  Google Scholar 

  • Cavanna AR, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583

    Article  PubMed  Google Scholar 

  • Culham JC, Brandt SA, Cavanagh P, Kanwisher NG, Dale AM, Tootell RB (1998) Cortical fMRI activation produced by attentive tracking of moving targets. J Neurophysiol 80:2657–2670

    CAS  PubMed  Google Scholar 

  • de Jong BM, van der Graaf FH, Paans AM (2001) Brain activation related to the representations of external space and body scheme in visuomotor control. Neuroimage 14:1128–1135

    Article  PubMed  Google Scholar 

  • Deutsch J, Borbely M, Filler J, Huhn K, Guarrera-Bowlby P (2008) Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Phys Ther 88:1196–1207

    Article  PubMed  Google Scholar 

  • Dohle C, Ostermann G, Hefter H, Freund H-J (2000) Different coupling for the reach and the grasp components in bimanual prehension movements. Neuroreport 11:3787–3791

    Article  CAS  PubMed  Google Scholar 

  • Dohle C, Kleiser R, Seitz RJ, Freund H-J (2004a) Body scheme gates visual processing. J Neurophysiol 91:2376–2379

    Article  PubMed  Google Scholar 

  • Dohle C, Stephan KM, Kleiser R, Valvoda JT, Kuhlen T, Seitz RJ, Freund H-J (2004b) The neural mechanisms of mirror training. 3rd Joint Congress of the Swiss Society of Neurorehabilitation, Austrian Society of Neurorehabilitation, German Society for Neurological Rehabilitation and 1st Regional Meeting of the World Federation for NeuroRehabilitation in association with the German Speaking Medical Society for Paraplegia, Zurich, Switzerland. Neurol Rehab 10:P16

  • Dohle C, Nakaten A, Püllen J, Rietz C, Karbe H (2005) Grundlagen und Anwendung des Spiegeltrainings. In: Minkwitz K, Scholz E (eds) Standardisierte Therapieverfahren und Grundlagen des Lernens in der Neurologie. Schulz-Kirchner-Verlag, Idstein, Germany, pp 59–68

    Google Scholar 

  • Dohle C, Puellen J, Nakaten A, Kuest J, Rietz C, Karbe H (2009) Mirror therapy promotes recovery from severe hemiparesis: a randomized, controlled trial. Neurorehabil Neural Repair 23:209–217

    PubMed  Google Scholar 

  • Dounskaia NV, Ketcham C, Stelmach GE (2002) Influence of biomechanical constraints on horizontal arm movements. Mot Control 6:366–387

    Google Scholar 

  • Eng K, Siekierka E, Pyk P, Chevrier E, Hauser Y, Cameirao M, Holper L, Hägni K, Zimmerli L, Duff A, Schuster C, Bassetti C, Verschure P, Kiper D (2007) Interactive visuo-motor therapy system for stroke rehabilitation. Med Biol Eng Comput 45:901–907

    Article  PubMed  Google Scholar 

  • Farrer C, Franck N, Georgieff N, Frith CD, Decety J, Jeannerod M (2003) Modulating the experience of agency: a positron emission tomography study. Neuroimage 18:324–333

    Article  CAS  PubMed  Google Scholar 

  • Farrer C, Franck G, Frith C, Decety J, Georgieff N, d’Amato T, Jeannerod M (2004) Neural correlates of action attribution in schizophrenia. Psych Res 131:31–44

    Article  Google Scholar 

  • Filimon F, Nelson JD, Huang RS, Sereno MI (2009) Multiple parietal reach regions in humans: cortical representations for visual and proprioceptive feedback during on-line reaching. J Neurosci 29:2961–2971

    Article  CAS  PubMed  Google Scholar 

  • Fink GR, Marshall JC, Halligan PW, Frith CD, Driver J, Frackowiak RS, Dolan RJ (1999) The neural consequences of conflict between intention and the senses. Brain 122:497–512

    Article  PubMed  Google Scholar 

  • Flanagan JR, Lolley S (2001) The inertial anisotropy of the arm is accurately predicted during movement planning. J Neurosci 21:1361–1369

    CAS  PubMed  Google Scholar 

  • Flynn FG, Benson DF, Ardila A (1999) Anatomy of the insula—functional and clinical correlates. Aphasiology 13:55–78

    Article  Google Scholar 

  • Franck N, Farrer C, Georgieff N, Marie-Cardien M, Daléry J, d’Amato T, Jeannerod M (2001) Defective recognition of one’s own actions in patients with schizphrenia. Am J Psychiatry 158:454–459

    Article  CAS  PubMed  Google Scholar 

  • Franz E, Packman T (2004) Fooling the brain into thinking it sees both hands moving enhances bimanual spatial coupling. Exp Brain Res 157:174–180

    Article  PubMed  Google Scholar 

  • Franz EA, Ramachandran VS (1998) Bimanual coupling in amputees with phantom limbs. Nat Neurosci 1:443–444

    Article  CAS  PubMed  Google Scholar 

  • Gaggioli A, Morganti F, Walker F, Meneghini A, Alcaniz M, Lozano J, Montesa J, Gil J, Riva G (2004) Training with computer-supported motor imagery in post-stroke rehabilitation. Cyberpsychol Behav 7:327–332

    Article  CAS  PubMed  Google Scholar 

  • Gentili R, Cahouet V, Ballay Y, Papaxanthis C (2004) Inertial properties of the arm are accurately predicted during motor imagery. Behav Brain Res 155:231–239

    Article  PubMed  Google Scholar 

  • Ghaem O, Mellet E, Crivello F, Tzourio N, Mazoyer B, Berthoz A, Denis M (1997) Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport 8:739–744

    Article  CAS  PubMed  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  CAS  PubMed  Google Scholar 

  • Grafton ST, Mazziotta JC, Woods RP, Phelps ME (1992) Human functional anatomy of visually guided finger movements. Brain 115:565–587

    Article  PubMed  Google Scholar 

  • Grèzes J, Decety J (2001) Functional anatomy of execution, mental simulation, observation and verb generation of actions: a meta-analysis. Hum Brain Mapp 12:1–19

    Article  PubMed  Google Scholar 

  • Herrington T, Assad J (2009) Neural activity in the middle temporal area and lateral intraparietal area during endogenously cued shifts of attention. J Neurosci 29:14160–14176

    Article  CAS  PubMed  Google Scholar 

  • Kable J, Kan I, Wilson A, Thompson-Schill S, Chatterjee A (2005) Conceptual representations of action in the lateral temporal cortex. J Cogn Neurosci 17:1855–1870

    Article  PubMed  Google Scholar 

  • Kertzman C, Schwarz U, Zeffiro TA, Hallett M (1997) The role of posterior parietal cortex in visually guided reaching movements in humans. Exp Brain Res 114:170–183

    Article  CAS  PubMed  Google Scholar 

  • Lacquaniti F, Soechting JF, Terzuolo CA (1982) Some factors pertinent to the organization and control of arm movements. Brain Res 252:394–397

    Article  CAS  PubMed  Google Scholar 

  • Lajoie Y, Paillard J, Teasdale N, Bard C, Fleury M, Forget R, Lamarre Y (1992) Mirror drawing in a deafferented patient and normal subjects: visuoproprioceptive conflict. Neurology 42:1104–1106

    CAS  PubMed  Google Scholar 

  • Le TH, Pardo JV, Hu X (1998) 4 T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. J Neurophysiol 79:1535–1548

    CAS  PubMed  Google Scholar 

  • Lutz K, Specht K, Shah NJ, Jancke L (2000) Tapping movements according to regular and irregular visual timing signals investigated with fMRI. Neuroreport 11:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Matthys K, Smits M, Van der Geest JN, Van der Lugt A, Seurinck R, Stam HJ, Selles RW (2009) Mirror-induced visual illusion of hand movements: a functional magnetic resonance imaging study. Arch Phys Med Rehabil 90:675–681

    Article  PubMed  Google Scholar 

  • McCabe C, Haigh R, Halligan P, Blake D (2005) Simulating sensory-motor incongruence in healthy volunteers: implications for a cortical model of pain. Rheumatology (Oxford) 44:509–516

    Article  CAS  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  CAS  PubMed  Google Scholar 

  • Milner AD, Perrett DI, Johnston RS, Benson PJ, Jordan TR, Heeley DW, Bettucci D, Mortara F, Mutani R, Terazzi E, Davidson D (1991) Perception and action in ‘visual form agnosia’. Brain 114:405–428

    Article  PubMed  Google Scholar 

  • Morganti F, Gaggioli A, Castelnuovo G, Bulla D, Vettorello M, Riva G (2003) The use of technology-supported mental imagery in neurological rehabilitation: a research protocol. Cyberpsychol Behav 6:421–427

    Article  PubMed  Google Scholar 

  • Müller F, Kunesch E, Binkofski F, Freund H-J (1991) Residual sensorimotor functions in a patient after right-sided hemispherectomy. Neuropsychologia 29:125–145

    Article  PubMed  Google Scholar 

  • Nagahama Y, Okada T, Katsumi Y, Hayashi T, Yamauchi H, Sawamoto N, Toma K, Nakamura K, Hanakawa T, Konishi J, Fukuyama H, Shibasaki H (1999) Transient neural activity in the medial superior frontal gyrus and precuneus time locked with attention shift between object features. Neuroimage 10:193–199

    Article  CAS  PubMed  Google Scholar 

  • Nakaten A, Govers J, Dohle C (2009) Spiegeltherapie in der Neurorehabilitation. Schulz-Kirchner-Verlag, Idstein, Germany

    Google Scholar 

  • Nelissen K, Vanduffel W, Orban GA (2006) Charting the lower superior temporal region, a new motion-sensitive region in monkey temporal sulcus. J Neurosci 26:5929–5947

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Papaxanthis C, Schieppati M, Gentili R, Pozzo T (2002) Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass. Exp Brain Res 143:447–452

    Article  PubMed  Google Scholar 

  • Parsons LM, Gabrieli JD, Phelps EA, Gazzaniga MS (1998) Cerebrally lateralized mental representations of hand shape and movement. J Neurosci 18:6539–6548

    CAS  PubMed  Google Scholar 

  • Parsons MW, Harrington DL, Rao SM (2005) Distinct neural systems underlie learning visuomotor and spatial representations of motor skills. Hum Brain Map 24:229–247

    Article  Google Scholar 

  • Perani D, Fazio F, Borghese NA, Tettamanti M, Ferrari S, Decety J, Gilardi MC (2001) Different brain correlates for watching real and virtual hand actions. Neuroimage 14:749–758

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran VS, Altschuler EL, Hillyer S (1997) Mirror agnosia. Proc Biol Sci 264:645–647

    Article  CAS  PubMed  Google Scholar 

  • Redding G, Rossetti Y, Wallace P (2005) Applications of prism adaptation: a tutorial in theory and method. Neurosci Biobehav Rev 29:431–444

    Article  PubMed  Google Scholar 

  • Sabes PN, Jordan MI (1997) Obstacle avoidance and a perturbation sensitivity model for motor planning. J Neurosci 17:7119–7128

    CAS  PubMed  Google Scholar 

  • Sabes PN, Jordan MI, Wolpert DM (1998) The role of inertial sensitivity in motor planning. J Neurosci 18:5948–5957

    CAS  PubMed  Google Scholar 

  • Saposnik G, Mamdani M, Bayley M, Thorpe KE, Hall J, Cohen LG, Teasell R (2010) Effectiveness of virtual reality exercises in stroke rehabilitation (EVREST): rationale, design, and protocol of a pilot randomized clinical trial assessing the Wii gaming system. Int J Stroke 5:47–51

    Article  CAS  PubMed  Google Scholar 

  • Schneider RJ, Friedman DP, Mishkin M (1993) A modality-specific somatosensory area within the insula of the rhesus monkey. Brain Res 621:116–120

    Article  CAS  PubMed  Google Scholar 

  • Soechting JF, Terzuolo CA (1986) An algorithm for the generation of curvilinear wrist motion in an arbitrary plane in three-dimensional space. Neuroscience 19:1393–1405

    Article  CAS  PubMed  Google Scholar 

  • Soechting JF, Lacquaniti F, Terzuolo CA (1986) Coordination of arm movements in three-dimensional space. Sensorimotor mapping during drawing movement. Neuroscience 17:295–311

    Article  CAS  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotactic atlas of the human brain. Thieme Verlag, New York

    Google Scholar 

  • Tsao JC (1950) Mixed distribution of practice in mirror drawing. J Exp Psychol 40:572–575

    CAS  PubMed  Google Scholar 

  • Valvoda JT, Assenmacher I, Dohle C, Kuhlen T, Bischof C (2003) NeuroVRAC—A comprehensive approach to virtual reality-based neurological assessment and treatment systems. In: Westwood JD, Hoffmann HM, Mogel GT, Phillips R, Robb RA, Strednev D (eds) Medicine meets virtual reality 11. NextMed: Health Horizon, IOS Press, Amsterdam, pp 370–372

  • Van Overwalle F, Baetens K (2009) Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage 48:564–584

    Article  PubMed  Google Scholar 

  • Vingerhoets G, de Lange FP, Vandemaele P, Deblaere K, Achten E (2002) Motor imagery in mental rotation: an fMRI study. Neuroimage 17:1623–1633

    Article  PubMed  Google Scholar 

  • Wei C, Jensen RK (1995) The application of segment axial density profiles to a human body inertia model. J Biomech 28:103–108

    Article  CAS  PubMed  Google Scholar 

  • Weiss PH, Marshall JC, Wunderlich G, Tellmann L, Halligan PW, Freund HJ, Zilles K, Fink GR (2000) Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. Brain 123(12):2531–2541

    Article  PubMed  Google Scholar 

  • Yavuzer G, Selles R, Sezer G, Sütbeyaz S, Bussmann JB, Köseoglu F, Atay MB, Stam HJ (2008) Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Arch Phys Med Rehab 89:393–398

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of the Deutsche Forschungsgemeinschaft (SFB 194, A9 & A13) and the Forschungskomission der Heinrich-Heine-Universität Düsseldorf. The prototype of the program was developed in the diploma thesis of M. Liebmann. We thank M. Lang for production of 15-O-Butanol, and E. Theelen and S. Schaden for their technical assistance during the studies. The comments of K. Zilles and anonymous reviewers on previous versions of this manuscript are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Dohle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dohle, C., Stephan, K.M., Valvoda, J.T. et al. Representation of virtual arm movements in precuneus. Exp Brain Res 208, 543–555 (2011). https://doi.org/10.1007/s00221-010-2503-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2503-0

Keywords

Navigation