Skip to main content
Log in

The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

During strong voluntary contractions, activity is not restricted to the target muscles. Other muscles, including contralateral muscles, often contract. We used transcranial magnetic stimulation (TMS) to analyse the origin of these unintended contralateral contractions (termed “associated” contractions). Subjects (n = 9) performed maximal voluntary contractions (MVCs) with their right elbow-flexor muscles followed by submaximal contractions with their left elbow flexors. Electromyographic activity (EMG) during the submaximal contractions was matched to the associated EMG in the left biceps brachii during the right MVC. During contractions, TMS was delivered to the motor cortex of the right or left hemisphere and excitatory motor evoked potentials (MEPs) and inhibitory (silent period) responses recorded from left biceps. Changes at a spinal level were investigated using cervicomedullary stimulation to activate corticospinal paths (n = 5). Stimulation of the right hemisphere produced silent periods of comparable duration in associated and voluntary contractions (218 vs 217 ms, respectively), whereas left hemisphere stimulation caused a depression of EMG but no EMG silence in either contraction. Despite matched EMG, MEPs elicited by right hemisphere stimulation were ∼1.5–2.5 times larger during associated compared to voluntary contractions (P < 0.005). Similar inhibition of the associated and matched voluntary activity during the silent period suggests that associated activity comes from the contralateral hemisphere and that motor areas in this (right) hemisphere are activated concomitantly with the motor areas in the left hemisphere. Comparison of the MEPs and subcortically evoked potentials implies that cortical excitability was greater in associated contractions than in the matched voluntary efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aranyi Z, Rosler KM (2002) Effort-induced mirror movements. A study of transcallosal inhibition in humans. Exp Brain Res 145:76–82

    Article  PubMed  Google Scholar 

  • Armatas CA, Summers JJ, Bradshaw JL (1994) Mirror movements in normal adult subjects. J Clin Exp Neuropsychol 16:405–413

    PubMed  CAS  Google Scholar 

  • Brasil-Neto JP, Cammarota A, Valls-Sole J, Pascual-Leone A, Hallett M, Cohen LG (1995) Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex. Acta Neurol Scand 92:383–386

    Article  PubMed  CAS  Google Scholar 

  • Carson RG (2005) Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Brain Res Rev 49:641–662

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Riek S, Mackey DC, Meichenbaum DP, Willms K, Forner M, Byblow WD (2004) Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. J Physiol 560:929–940

    Article  PubMed  CAS  Google Scholar 

  • Cernacek J (1961) Contralateral motor irradiation—cerebral dominance. Its changes in hemiparesis. Arch Neurol 4:165–172

    PubMed  CAS  Google Scholar 

  • Chen R, Lozano AM, Ashby P (1999) Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128:539–542

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Yung D, Li JY (2003) Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol 89:1256–1264

    Article  PubMed  Google Scholar 

  • Cohen LG, Bandinelli S, Sato S, Kufta C, Hallett M (1991) Attenuation in detection of somatosensory stimuli by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 81:366–376

    Article  PubMed  CAS  Google Scholar 

  • Curschmann H (1906) Beitrage zur physiologie und pathologie der kontralateralen mitbewegungen. Deutsche Zeitschrift Nervenheilkunde 31:1–52

    Article  Google Scholar 

  • Datta AK, Harrison LM, Stephens JA (1989) Task-dependent changes in the size of response to magnetic brain stimulation in human first dorsal interosseous muscle. J Physiol 418:13–23

    PubMed  CAS  Google Scholar 

  • Diedrichsen J, Hazeltine E, Nurss W, Ivry R (2003) The role of the corpus callosum in the coupling of bimanual isometric force pulses. J Neurophysiol 90:2409–2418

    Article  PubMed  Google Scholar 

  • Durwen HF, Herzog AG, Falk A, Calabrese P, Gehlen W (1997) Motorische spiegelphanomene; Spielgelbildliche mitbewegungen und mitaktivierungen. Neurol Rehabil 2:69–75

    Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    PubMed  CAS  Google Scholar 

  • Flament D, Goldsmith P, Buckley CJ, Lemon RN (1993) Task dependence of responses in first dorsal interosseous muscle to magnetic brain stimulation in man. J Physiol 464:361–378

    PubMed  CAS  Google Scholar 

  • Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262

    Article  PubMed  CAS  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    PubMed  CAS  Google Scholar 

  • Gandevia SC, Macefield VG, Bigland-Ritchie B, Gorman RB, Burke D (1993) Motoneuronal output and gradation of effort in attempts to contract acutely paralysed leg muscles in man. J Physiol 471:411–427

    PubMed  CAS  Google Scholar 

  • Gerloff C, Cohen LG, Floeter MK, Chen R, Corwell B, Hallett M (1998) Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. J Physiol 510:249–259

    Article  PubMed  CAS  Google Scholar 

  • Hess CW, Mills KR, Murray NM (1986) Magnetic stimulation of the human brain: facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee. Neurosci Lett 71:235–240

    Article  PubMed  CAS  Google Scholar 

  • Hortobagyi T, Taylor JL, Petersen NT, Russell G, Gandevia SC (2003) Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol 90:2451–2459

    Article  PubMed  Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534

    PubMed  CAS  Google Scholar 

  • Kang Y, Kaneko T, Ohishi H, Endo K, Araki T (1994) Spatiotemporally differential inhibition of pyramidal cells in the cat motor cortex. J Neurophysiol 71:280–293

    PubMed  CAS  Google Scholar 

  • Kernell D, Hultborn H (1990) Synaptic effects on recruitment gain: a mechanism of importance for the input–output relations of motoneurone pools? Brain Res 507:176–179

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Ashe J, Georgopoulos AP, Merkle H, Ellermann JM, Menon RS, Ogawa S, Ugurbil K (1993) Functional imaging of human motor cortex at high magnetic field. J Neurophysiol 69:297–302

    PubMed  CAS  Google Scholar 

  • Leocani L, Cohen LG, Wassermann EM, Ikoma K, Hallett M (2000) Human corticospinal excitability evaluated with transcranial magnetic stimulation during different reaction time paradigms. Brain 123:1161–1173

    Article  PubMed  Google Scholar 

  • Liepert J, Dettmers C, Terborg C, Weiller C (2001) Inhibition of ipsilateral motor cortex during phasic generation of low force. Clin Neurophysiol 112:114–121

    Article  PubMed  CAS  Google Scholar 

  • Maccabee PJ, Amassian VE, Cracco RQ, Cracco JB, Rudell AP, Eberle LP, Zemon V (1991) Magnetic coil stimulation of human visual cortex: studies of perception. Electroencephalogr Clin Neurophysiol 43(Suppl):111–120

    CAS  Google Scholar 

  • Mayston MJ, Harrison LM, Stephens JA (1999) A neurophysiological study of mirror movements in adults and children. Ann Neurol 45:583–594

    Article  PubMed  CAS  Google Scholar 

  • Meyer BU, Roricht S, Grafin von EH, Kruggel F, Weindl A (1995) Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118:429–440

    PubMed  Google Scholar 

  • Muellbacher W, Facchini S, Boroojerdi B, Hallett M (2000) Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clin Neurophysiol 111:344–349

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237

    Article  PubMed  CAS  Google Scholar 

  • Pinneo LR (1961) The effects of induced muscle tension during tracking on level of activation and on performance. J Exp Psychol 62:523–531

    Article  PubMed  CAS  Google Scholar 

  • Samii A, Canos M, Ikoma K, Wassermann EM , Hallett M (1997) Absence of facilitation or depression of motor evoked potentials after contralateral homologous muscle activation. Electroencephalogr Clin Neurophysiol 105:241–245

    Article  PubMed  CAS  Google Scholar 

  • Shinohara M, Keenan KG, Enoka RM (2003) Contralateral activity in a homologous hand muscle during voluntary contractions is greater in old adults. J Appl Physiol 94:966–974

    PubMed  Google Scholar 

  • Singh LN, Higano S, Takahashi S, Kurihara N, Furuta S, Tamura H, Shimanuki Y, Mugikura S, Fujii T, Yamadori A, Sakamoto M, Yamada S (1998) Comparison of ipsilateral activation between right and left handers: a functional MR imaging study. Neuroreport 9:1861–1866

    Article  PubMed  CAS  Google Scholar 

  • Sohn YH, Dang N, Hallett M (2003) Suppression of corticospinal excitability during negative motor imagery. J Neurophysiol 90:2303–2309

    Article  PubMed  Google Scholar 

  • Stedman A, Davey NJ, Ellaway PH (1998) Facilitation of human first dorsal interosseous muscle responses to transcranial magnetic stimulation during voluntary contraction of the contralateral homonymous muscle. Muscle Nerve 21:1033–1039

    Article  PubMed  CAS  Google Scholar 

  • Taylor JL, Gandevia SC (2004) Noninvasive stimulation of the human corticospinal tract. J Appl Physiol 96:1496–1503

    Article  PubMed  CAS  Google Scholar 

  • Tinazzi M, Zanette G (1998) Modulation of ipsilateral motor cortex in man during unimanual finger movements of different complexities. Neurosci Lett 244:121–124

    Article  PubMed  CAS  Google Scholar 

  • Tinazzi M, Farina S, Tamburin S, Facchini S, Fiaschi A, Restivo D, Berardelli A (2003) Task-dependent modulation of excitatory and inhibitory functions within the human primary motor cortex. Exp Brain Res 150:222–229

    PubMed  Google Scholar 

  • Todor JI, Lazarus JA (1986) Exertion level and the intensity of associated movements. Dev Med Child Neurol 28:205–212

    Article  PubMed  CAS  Google Scholar 

  • Wassermann EM, Fuhr P, Cohen LG, Hallett M (1991) Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41:1795–1799

    PubMed  CAS  Google Scholar 

  • Wassermann EM, Pascual-Leone A, Hallett M (1994) Cortical motor representation of the ipsilateral hand and arm. Exp Brain Res 100:121–132

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, Cincotta M, Wassermann EM (1999) Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol 518:895–906

    Article  PubMed  CAS  Google Scholar 

  • Zijdewind I, Kernell D (2001) Bilateral interactions during contractions of intrinsic hand muscles. J Neurophysiol 85:1907–1913

    PubMed  CAS  Google Scholar 

  • Zwarts MJ (1992) Central motor conduction in relation to contra- and ipsilateral activation. Electroencephalogr Clin Neurophysiol 85:425–428

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Health and Medical Research Council (Australia). I. Zijdewind was supported by a travel grant of The Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge Zijdewind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zijdewind, I., Butler, J.E., Gandevia, S.C. et al. The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles. Exp Brain Res 175, 526–535 (2006). https://doi.org/10.1007/s00221-006-0570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0570-z

Keywords

Navigation