Skip to main content
Log in

Lumbar spine peak bone mass and bone turnover in men and women: a longitudinal study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Peak bone mass is an important determinant of bone mass in later life, but the age of peak bone mass is still unclear. We found that bone size and density increase and bone turnover decreases until age 25. It may be possible to influence bone accrual into the third decade.

Introduction

Peak bone mass is a major determinant of bone mass in later life. Bone growth and maturation is site-specific, and the age of peak bone mass is still unclear. It is important to know the age to which bone accrual continues so strategies to maximise bone mass can be targeted appropriately. This study aims to ascertain the age of lumbar spine peak bone mass.

Methods

We measured lumbar spine BMC, estimated volume and BMAD by DXA and biochemical markers of bone turnover in 116 healthy males and females ages 11 to 40, followed up at an interval of five to nine years.

Results

The majority of peak bone mass was attained by the mid-twenties. Increases in BMC in adolescents and young adults were mostly due to increases in bone size. Bone turnover markers decreased through adolescence and the third decade and the decreasing rate of change in bone turnover corresponded with the decreasing rate of change in lumbar spine measurements.

Conclusions

Skeletal maturation and bone mineral accrual at the lumbar spine continues into the third decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bonjour JP, Theintz G, Law F et al (1994) Peak bone mass. Osteoporosis Int 1:S7–S13

    Article  Google Scholar 

  2. Eisman JA, Kelly PJ, Morrison NA et al (1993) Peak bone mass and osteoporosis prevention. Osteoporosis Int 3(Suppl 1):S56–S60

    Article  Google Scholar 

  3. Lu PW, Cowell CT, Lloyd-Jones SA et al (1996) Volumetric bone mineral density in normal subjects aged 5–27 years. J Clin Endocrinol Metab 81:1586–1590

    Article  PubMed  CAS  Google Scholar 

  4. Rosenthal DI, Mayo-Smith W, Hayes CW et al (1989) Age and bone mass in premenopausal women. J Bone Miner Res 4:533–538

    PubMed  CAS  Google Scholar 

  5. Theintz G, Buchs B, Rizzoli R et al (1992) Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 75:1060–1065

    Article  PubMed  CAS  Google Scholar 

  6. Faulkner RA, Bailey DA, Drinkwater DT et al (1996) Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int 59:344–351

    Article  PubMed  CAS  Google Scholar 

  7. Recker RR, Davies MK, Hinders SM et al (1992) Bone gain in young adult women. JAMA 268:2403–2408

    Article  PubMed  CAS  Google Scholar 

  8. Lloyd T, Petit MA, Lin HM et al (2004) Lifestyle factors and the development of bone mass and bone strength in young women. J Pediatr 144:776–782

    PubMed  Google Scholar 

  9. Lin YC, Lyle RM, Weaver CM et al (2003) Peak spine and femoral neck bone mass in young women. Bone 32:546–553

    Article  PubMed  Google Scholar 

  10. Rodin A, Murby B, Smith MA et al (1990) Premenopausal bone loss in the lumbar spine and neck of femur: a study of 225 Caucasian women. Bone 11:1–5

    Article  PubMed  CAS  Google Scholar 

  11. Sabatier JP, Guaydier-Souquieres G, Benmalek A et al (1999) Evolution of lumbar bone mineral content during adolescence and adulthood: a longitudinal study in 395 healthy females 10–24 years of age and 206 premenopausal women. Osteoporosis Int 9:476–482

    Article  CAS  Google Scholar 

  12. Teegarden D, Proulx WR, Martin BR et al (1995) Peak bone mass in young women. J Bone Miner Res 10:711–715

    PubMed  CAS  Google Scholar 

  13. Matkovic V, Jelic T, Wardlaw GM et al (1994) Timing of peak bone mass and its implications for the prevention of osteoporosis: inference from a cross-sectional model. J Clin Invest 93:799–808

    Article  PubMed  CAS  Google Scholar 

  14. Haapasalo H, Kannus P, Sievanen H et al (1996) Development of mass, density and estimated mechanical characteristics of bones in Caucasian females. J Bone Miner Res 11:1751–1760

    PubMed  CAS  Google Scholar 

  15. Hui SL, Zhou L, Evans R et al (1999) Rates of growth and loss of bone mineral in the spine and femoral neck in white females. Osteoporosis Int 9:200–205

    Article  CAS  Google Scholar 

  16. Harel Z, Gold M, Cromer B et al (2007) Bone mineral density in postmenarchal adolescent girls in the United States: associated biopsychosocial variables and bone turnover markers. J Adol Health 40:44–53

    Article  Google Scholar 

  17. Blumsohn A, Hannon R, Wrate R et al (1994) Biochemical markers of bone turnover in girls during puberty. Clin Endocrinol 40:663–670

    Article  CAS  Google Scholar 

  18. Yilmaz D, Ersoy B, Bilgin E et al (2005) Bone mineral density in girls and boys at different pubertal stages: relation with gonadal steroids, bone formation markers and growth parameters. J Bone Miner Metab 23:476–482

    Article  PubMed  CAS  Google Scholar 

  19. Slemenda CW, Peacock M, Hui S et al (1997) Reduced rates of skeletal remodelling are associated with increased bone mineral density during the development of peak skeletal mass. J Bone Miner Res 12:676–682

    Article  PubMed  CAS  Google Scholar 

  20. Libanati C, Baylink DJ, Lois-Wenzel E et al (1999) Studies on the potential mediators of skeletal changes occurring during puberty in girls. J Clin Endocrinol Metab 84:2807–2814

    Article  PubMed  CAS  Google Scholar 

  21. Bass S, Delmas P, Pearce G et al (1999) The differing tempo of growth in bone size, mass and density in girls is region-specific. J Clin Invest 104:795–804

    Article  PubMed  CAS  Google Scholar 

  22. Bradney M, Karlsson MK, Duan Y et al (2000) Heterogeneity in the growth of the axial and appendicular skeleton in boys: implications for the pathogenesis of bone fragility in men. J Bone Miner Res 15:1871–1878

    Article  PubMed  CAS  Google Scholar 

  23. Parsons TJ, Prentice A, Smith EA et al (1996) Bone mineral mass consolidation in young British adults. J Bone Miner Res 11:264–274

    Article  PubMed  CAS  Google Scholar 

  24. Tabensky AD, Williams J, DeLuca V et al (1996) Bone mass, areal and volumetric bone density are equally accurate, sensitive and specific surrogates of the breaking strength of the vertebral body; and in vitro study. J Bone Miner Res 11:1981–1988

    PubMed  CAS  Google Scholar 

  25. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    PubMed  CAS  Google Scholar 

  26. Peel NFA, Eastell R (1994) Diagnostic value of estimated volumetric bone mineral density of the lumbar spine in osteoporosis. J Bone Miner Res 9:317–320

    PubMed  CAS  Google Scholar 

  27. Whiting SJ, Vatanparast H, Baxter-Jones A et al (2004) Factors that affect bone mineral accrual in the adolescent growth spurt. J Nutr 134:696S–700S

    PubMed  Google Scholar 

  28. Hoonpongsimanon S, Santipapmonthon M, Chuntana M (2005) Spinal bone mineral density by quantitative computed tomography in Thais compared with Westerners. J Med Assoc Thailand 88:1666–1673

    Google Scholar 

  29. Riggs BL, Melton LJ 3rd, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  30. Seeman E (1997) From density to structure: growing up and growing old on the surfaces of bone. J Bone Miner Res 12:509–521

    Article  PubMed  CAS  Google Scholar 

  31. Boot AM, De Ridder MAJ, Pols HAP et al (1997) Bone mineral density in children and adolescents: relation to puberty, calcium intake and physical activity. J Clin Endocrinol Metab 82:57–62

    Article  PubMed  CAS  Google Scholar 

  32. Cadogan J, Blumsohn A, Barker ME et al (1998) A longitudinal study of bone gain in pubertal girls: anthropometric and biomechanical correlates. J Bone Miner Res 10:1602–1616

    Article  Google Scholar 

  33. Rubin LA, Hawker GA, Peltekova VD et al (1999) Determinants of peak bone mass: clinical and genetic analyses in a young female Canadian cohort. J Bone Miner Res 14:633–643

    Article  PubMed  CAS  Google Scholar 

  34. Douchi T, Kuwahata R, Matsuo T et al (2003) Relative contribution of lean and fat mass component to bone mineral density in males. J Bone Miner Metab 21:17–21

    Article  PubMed  CAS  Google Scholar 

  35. Karlsson KM, Karlsson C, Ahlborg HG et al (2003) The duration of exercise as a regulator of bone turnover. Calcif Tissue Int 73:350–355

    Article  PubMed  CAS  Google Scholar 

  36. Maimoun L, Mario-Goulart D, Couret I et al (2004) Effects of physical activities that induce moderate external loading on bone metabolism in male athletes. J Sport Sci 22:875–873

    Article  CAS  Google Scholar 

  37. Eliakim A, Raisz LG, Brasel JA et al (1997) Evidence for increased bone formation following a brief endurance-type training intervention in adolescent males. J Bone Miner Res 12:1708–1713

    Article  PubMed  CAS  Google Scholar 

  38. Creighton DL, Morgan AL, Boardley D et al (2001) Weight-bearing exercise and markers of bone turnover in female athletes. J Appl Physiol 90:565–570

    PubMed  CAS  Google Scholar 

  39. Wren TAL, Kim PS, Janicka A et al (2007) Timing of peak bone mass: discrepancies between CT and DXA. J Clin Endocrinol Metab 92:938–941

    Article  PubMed  CAS  Google Scholar 

  40. Alfredson H, Nordstrom P, Lorentzon R (1997) Aerobic workout and bone mass in young females. Scand J Med Sci Sport 7:336–341

    CAS  Google Scholar 

  41. Kato T, Terashima T, Yamashita T et al (2006) Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol 100:839–843

    Article  PubMed  Google Scholar 

  42. Calvo MS, Kumar R, Heath H (2006) Persistently elevated parathyroid hormone secretion and action in young women after four weeks of ingesting high phosphorus, low calcium diets. J Clin Endocrinol Metab 70:1334–1340

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Fatma Gossiel for measurement of the bone turnover markers. This study was funded by the Arthritis Research Campaign.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, J.S., Henry, Y.M., Fatayerji, D. et al. Lumbar spine peak bone mass and bone turnover in men and women: a longitudinal study. Osteoporos Int 20, 355–362 (2009). https://doi.org/10.1007/s00198-008-0672-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-008-0672-5

Keywords

Navigation