Skip to main content

Advertisement

Log in

NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Ischemia/reperfusion injury (IRI) is crucial in the pathology of major cardiovascular diseases, such as stroke and myocardial infarction. Paradoxically, both the lack of oxygen during ischemia and the replenishment of oxygen during reperfusion can cause tissue injury. Clinical outcome is also determined by a third, post-reperfusion phase characterized by tissue remodeling and adaptation. Increased levels of reactive oxygen species (ROS) have been suggested to be key players in all three phases. As a second paradox, ROS seem to play a double-edged role in IRI, with both detrimental and beneficial effects. These Janus-faced effects of ROS may be linked to the different sources of ROS or to the different types of ROS that exist and may also depend on the phase of IRI. With respect to therapeutic implications, an untargeted application of antioxidants may not differentiate between detrimental and beneficial ROS, which might explain why this approach is clinically ineffective in lowering cardiovascular mortality. Under some conditions, antioxidants even appear to be harmful. In this review, we discuss recent breakthroughs regarding a more targeted and promising approach to therapeutically modulate ROS in IRI. We will focus on NADPH oxidases and their catalytic subunits, NOX, as they represent the only known enzyme family with the sole function to produce ROS. Similar to ROS, NADPH oxidases may play a dual role as different NOX isoforms may mediate detrimental or protective processes. Unraveling the precise sequence of events, i.e., determining which role the individual NOX isoforms play in the various phases of IRI, may provide the crucial molecular and mechanistic understanding to finally effectively target oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eltzschig HK, Collard CD (2004) Vascular ischaemia and reperfusion injury. Br Med Bull 70:71–86

    Article  CAS  PubMed  Google Scholar 

  2. Maxwell SR, Lip GY (1997) Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol 58:95–117

    Article  CAS  PubMed  Google Scholar 

  3. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ (2003) Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361:2017–2023

    Article  CAS  PubMed  Google Scholar 

  4. Bath PM, Gray LJ, Bath AJ, Buchan A, Miyata T, Green AR (2009) Effects of NXY-059 in experimental stroke: an individual animal meta-analysis. Br J Pharmacol 157:1157–1171

    Article  CAS  PubMed  Google Scholar 

  5. Andreadou I, Iliodromitis EK, Farmakis D, Kremastinos DT (2009) To prevent, protect and save the ischemic heart: antioxidants revisited. Expert Opin Ther Targets 13:945–956

    Article  CAS  PubMed  Google Scholar 

  6. Jaxa-Chamiec T, Bednarz B, Herbaczynska-Cedro K, Maciejewski P, Ceremuzynski L (2009) Effects of vitamins C and E on the outcome after acute myocardial infarction in diabetics: a retrospective, hypothesis-generating analysis from the MIVIT study. Cardiology 112:219–223

    Article  CAS  PubMed  Google Scholar 

  7. Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    Article  CAS  PubMed  Google Scholar 

  8. Gourdin MJ, Bree B, De Kock M (2009) The impact of ischaemia–reperfusion on the blood vessel. Eur J Anaesthesiol 26:537–547

    Article  CAS  PubMed  Google Scholar 

  9. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  CAS  PubMed  Google Scholar 

  10. Forstermann U (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 5:338–349

    Article  PubMed  CAS  Google Scholar 

  11. Elahi MM, Kong YX, Matata BM (2009) Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev 2:259–269

    Article  PubMed  Google Scholar 

  12. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912–1916

    Article  PubMed  Google Scholar 

  13. Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edged sword? J Clin Invest 76:1713–1719

    Article  CAS  PubMed  Google Scholar 

  14. Maulik N (2002) Redox regulation of vascular angiogenesis. Antioxid Redox Signal 4:783–784

    Article  CAS  PubMed  Google Scholar 

  15. Maulik N, Das DK (2002) Redox signaling in vascular angiogenesis. Free Radic Biol Med 33:1047–1060

    Article  CAS  PubMed  Google Scholar 

  16. Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555:589–606

    Article  CAS  PubMed  Google Scholar 

  17. Di Lisa F, Bernardi P (2006) Mitochondria and ischemia–reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70:191–199

    Article  PubMed  CAS  Google Scholar 

  18. Di Lisa F, Canton M, Menabo R, Kaludercic N, Bernardi P (2007) Mitochondria and cardioprotection. Heart Fail Rev 12:249–260

    Article  PubMed  CAS  Google Scholar 

  19. Gao L, Laude K, Cai H (2008) Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Vet Clin North Am Small Anim Pract 38:137–155, vi

    Article  PubMed  Google Scholar 

  20. Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 33:774–797

    Article  CAS  PubMed  Google Scholar 

  21. Meneshian A, Bulkley GB (2002) The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation 9:161–175

    CAS  PubMed  Google Scholar 

  22. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8:691–728

    Article  CAS  PubMed  Google Scholar 

  23. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  PubMed  Google Scholar 

  24. Lassegue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30:653–661

    Article  CAS  PubMed  Google Scholar 

  25. Sirker A, Zhang M, Shah AM (2011) NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res Cardiol 106:735–747

    Google Scholar 

  26. Rivera J, Sobey CG, Walduck AK, Drummond GR (2010) Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep 15:50–63

    Article  CAS  PubMed  Google Scholar 

  27. Guzik TJ, Harrison DG (2006) Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov Today 11:524–533

    Article  CAS  PubMed  Google Scholar 

  28. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  29. Hamilton CA, Miller WH, Al-Benna S, Brosnan MJ, Drummond RD, McBride MW, Dominiczak AF (2004) Strategies to reduce oxidative stress in cardiovascular disease. Clin Sci (Lond) 106:219–234

    Article  CAS  Google Scholar 

  30. Williams HC, Griendling KK (2007) NADPH oxidase inhibitors: new antihypertensive agents? J Cardiovasc Pharmacol 50:9–16

    Article  CAS  PubMed  Google Scholar 

  31. Geiszt M (2006) NADPH oxidases: new kids on the block. Cardiovasc Res 71:289–299

    Article  CAS  PubMed  Google Scholar 

  32. Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–R297

    CAS  PubMed  Google Scholar 

  33. Gorlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R (2000) A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res 87:26–32

    Article  CAS  PubMed  Google Scholar 

  34. Jones SA, O’Donnell VB, Wood JD, Broughton JP, Hughes EJ, Jones OT (1996) Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol 271:H1626–H1634

    CAS  PubMed  Google Scholar 

  35. Wingler K, Wunsch S, Kreutz R, Rothermund L, Paul M, Schmidt HH (2001) Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin–angiotensin system in vitro and in vivo. Free Radic Biol Med 31:1456–1464

    Article  CAS  PubMed  Google Scholar 

  36. Miller AA, Drummond GR, Schmidt HH, Sobey CG (2005) NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res 97:1055–1062

    Article  CAS  PubMed  Google Scholar 

  37. Miller AA, Drummond GR, Mast AE, Schmidt HH, Sobey CG (2007) Effect of gender on NADPH-oxidase activity, expression, and function in the cerebral circulation: role of estrogen. Stroke; J Cereb Circ 38:2142–2149

    Article  CAS  Google Scholar 

  38. BelAiba RS, Djordjevic T, Petry A, Diemer K, Bonello S, Banfi B, Hess J, Pogrebniak A, Bickel C, Gorlach A (2007) NOX5 variants are functionally active in endothelial cells. Free Radic Biol Med 42:446–459

    Article  CAS  PubMed  Google Scholar 

  39. Jay DB, Papaharalambus CA, Seidel-Rogol B, Dikalova AE, Lassegue B, Griendling KK (2008) Nox5 mediates PDGF-induced proliferation in human aortic smooth muscle cells. Free Radic Biol Med 45:329–335

    Article  CAS  PubMed  Google Scholar 

  40. Block K, Gorin Y, Abboud HE (2009) Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci U S A 106:14385–14390

    Article  CAS  PubMed  Google Scholar 

  41. Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK (2004) Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24:677–683

    Article  CAS  PubMed  Google Scholar 

  42. Lobysheva I, Rath G, Sekkali B, Bouzin C, Feron O, Gallez B, Dessy C, Balligand JL (2011) Moderate caveolin-1 downregulation prevents NADPH oxidase-dependent endothelial nitric oxide synthase uncoupling by angiotensin II in endothelial cells. Arterioscler Thromb Vasc Biol 31:2098–2105

    Article  CAS  PubMed  Google Scholar 

  43. Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP (2004) Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279:45935–45941

    Article  CAS  PubMed  Google Scholar 

  44. Opitz N, Drummond GR, Selemidis S, Meurer S, Schmidt HH (2007) The ‘A’s and ‘O’s of NADPH oxidase regulation: a commentary on “Subcellular localization and function of alternatively spliced Noxo1 isoforms”. Free Radic Biol Med 42:175–179

    Article  CAS  PubMed  Google Scholar 

  45. Brandes RP, Miller FJ, Beer S, Haendeler J, Hoffmann J, Ha T, Holland SM, Gorlach A, Busse R (2002) The vascular NADPH oxidase subunit p47phox is involved in redox-mediated gene expression. Free Radic Biol Med 32:1116–1122

    Article  CAS  PubMed  Google Scholar 

  46. Djordjevic T, Pogrebniak A, BelAiba RS, Bonello S, Wotzlaw C, Acker H, Hess J, Gorlach A (2005) The expression of the NADPH oxidase subunit p22phox is regulated by a redox-sensitive pathway in endothelial cells. Free Radic Biol Med 38:616–630

    Article  CAS  PubMed  Google Scholar 

  47. He L, Chen J, Dinger B, Sanders K, Sundar K, Hoidal J, Fidone S (2002) Characteristics of carotid body chemosensitivity in NADPH oxidase-deficient mice. Am J Physiol Cell Physiol 282:C27–C33

    CAS  PubMed  Google Scholar 

  48. Jones RD, Hancock JT, Morice AH (2000) NADPH oxidase: a universal oxygen sensor? Free Radic Biol Med 29:416–424

    Article  CAS  PubMed  Google Scholar 

  49. Block K, Gorin Y, Hoover P, Williams P, Chelmicki T, Clark RA, Yoneda T, Abboud HE (2007) NAD(P)H oxidases regulate HIF-2alpha protein expression. J Biol Chem 282:8019–8026

    Article  CAS  PubMed  Google Scholar 

  50. Diebold I, Flugel D, Becht S, Belaiba RS, Bonello S, Hess J, Kietzmann T, Gorlach A (2010) The hypoxia-inducible factor-2alpha is stabilized by oxidative stress involving NOX4. Antioxid Redox Signal 13:425–436

    Article  CAS  PubMed  Google Scholar 

  51. Diebold I, Petry A, Hess J, Gorlach A (2010) The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol Biol Cell 21:2087–2096

    Article  CAS  PubMed  Google Scholar 

  52. Gorlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP, Kietzmann T, Busse R (2001) Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: role of the p22(phox)-containing NADPH oxidase. Circ Res 89:47–54

    Article  CAS  PubMed  Google Scholar 

  53. Goyal P, Weissmann N, Grimminger F, Hegel C, Bader L, Rose F, Fink L, Ghofrani HA, Schermuly RT, Schmidt HH et al (2004) Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species. Free Radic Biol Med 36:1279–1288

    Article  CAS  PubMed  Google Scholar 

  54. Yuan G, Khan SA, Luo W, Nanduri J, Semenza GL, Prabhakar NR (2011) Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol 226:2925–2933

    Google Scholar 

  55. Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR (2008) Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol 217:674–685

    Article  CAS  PubMed  Google Scholar 

  56. Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R, Nelson DP, Dinauer MC, Weir EK (1999) O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci U S A 96:7944–7949

    Article  CAS  PubMed  Google Scholar 

  57. He L, Dinger B, Sanders K, Hoidal J, Obeso A, Stensaas L, Fidone S, Gonzalez C (2005) Effect of p47phox gene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells. Am J Physiol Lung Cell Mol Physiol 289:L916–L924

    Article  CAS  PubMed  Google Scholar 

  58. Roy A, Rozanov C, Mokashi A, Daudu P, Al-mehdi AB, Shams H, Lahiri S (2000) Mice lacking in gp91 phox subunit of NAD(P)H oxidase showed glomus cell [Ca(2+)](i) and respiratory responses to hypoxia. Brain Res 872:188–193

    Article  CAS  PubMed  Google Scholar 

  59. Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G et al (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101:258–267

    Article  CAS  PubMed  Google Scholar 

  60. Rupin A, Paysant J, Sansilvestri-Morel P, Lembrez N, Lacoste JM, Cordi A, Verbeuren TJ (2004) Role of NADPH oxidase-mediated superoxide production in the regulation of E-selectin expression by endothelial cells subjected to anoxia/reoxygenation. Cardiovasc Res 63:323–330

    Article  CAS  PubMed  Google Scholar 

  61. Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF (2006) Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 291:H2210–H2215

    Article  CAS  PubMed  Google Scholar 

  62. Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HH (2010) Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 8(9). pii: e1000479

  63. Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I (2005) Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 132:233–238

    Article  CAS  PubMed  Google Scholar 

  64. Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM, Sorrentino S, Manes C, Schieffer B, Drexler H et al (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100:894–903

    Article  CAS  PubMed  Google Scholar 

  65. Looi YH, Grieve DJ, Siva A, Walker SJ, Anilkumar N, Cave AC, Marber M, Monaghan MJ, Shah AM (2008) Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 51:319–325

    Article  CAS  PubMed  Google Scholar 

  66. Zhao W, Zhao D, Yan R, Sun Y (2009) Cardiac oxidative stress and remodeling following infarction: role of NADPH oxidase. Cardiovasc Pathol 18:156–166

    Article  CAS  PubMed  Google Scholar 

  67. Craige SM, Chen K, Pei Y, Li C, Huang X, Chen C, Shibata R, Sato K, Walsh K, Keaney JF Jr (2011) NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation 124:731–740

    Article  CAS  PubMed  Google Scholar 

  68. Kietzmann T, Gorlach A (2005) Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin Cell Dev Biol 16:474–486

    Article  CAS  PubMed  Google Scholar 

  69. Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007(407):cm8

  70. Dery MA, Michaud MD, Richard DE (2005) Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 37:535–540

    Article  CAS  PubMed  Google Scholar 

  71. Bonello S, Zahringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, Kietzmann T, Gorlach A (2007) Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 27:755–761

    Article  CAS  PubMed  Google Scholar 

  72. Diebold I, Djordjevic T, Hess J, Gorlach A (2008) Rac-1 promotes pulmonary artery smooth muscle cell proliferation by upregulation of plasminogen activator inhibitor-1: role of NFkappaB-dependent hypoxia-inducible factor-1alpha transcription. Thromb Haemost 100:1021–1028

    CAS  PubMed  Google Scholar 

  73. Diebold IPA, Sabrane K, Djordjevic T, Hess J, Görlach (2012) The HIF1 target gene NOX2 promotes angiogenesis through urotensin-II. J Cell Sci 125:956–964

  74. Gorlach A, Berchner-Pfannschmidt U, Wotzlaw C, Cool RH, Fandrey J, Acker H, Jungermann K, Kietzmann T (2003) Reactive oxygen species modulate HIF-1 mediated PAI-1 expression: involvement of the GTPase Rac1. Thromb Haemost 89:926–935

    CAS  PubMed  Google Scholar 

  75. Hirota K, Semenza GL (2001) Rac1 activity is required for the activation of hypoxia-inducible factor 1. J Biol Chem 276:21166–21172

    Article  CAS  PubMed  Google Scholar 

  76. Chen H, Song YS, Chan PH (2009) Inhibition of NADPH oxidase is neuroprotective after ischemia–reperfusion. J Cereb Blood Flow Metab 29:1262–1272

    Article  CAS  PubMed  Google Scholar 

  77. Chen H, Kim GS, Okami N, Narasimhan P, Chan PH (2011) NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis 42:341–348

    Article  CAS  PubMed  Google Scholar 

  78. Yang Z, Sharma AK, Marshall M, Kron IL, Laubach VE (2009) NADPH oxidase in bone marrow-derived cells mediates pulmonary ischemia–reperfusion injury. Am J Respir Cell Mol Biol 40:375–381

    Article  CAS  PubMed  Google Scholar 

  79. Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, Brandes RP (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51:211–217

    Article  PubMed  CAS  Google Scholar 

  80. Borchi E, Parri M, Papucci L, Becatti M, Nassi N, Nassi P, Nediani C (2009) Role of NADPH oxidase in H9c2 cardiac muscle cells exposed to simulated ischaemia–reperfusion. J Cell Mol Med 13:2724–2735

    Article  PubMed  Google Scholar 

  81. Meischl C, Krijnen PA, Sipkens JA, Cillessen SA, Munoz IG, Okroj M, Ramska M, Muller A, Visser CA, Musters RJ et al (2006) Ischemia induces nuclear NOX2 expression in cardiomyocytes and subsequently activates apoptosis. Apoptosis 11:913–921

    Article  CAS  PubMed  Google Scholar 

  82. Wind S, Beuerlein K, Eucker T, Muller H, Scheurer P, Armitage ME, Ho H, Schmidt HH, Wingler K (2010) Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br J Pharmacol 161:885–898

    Article  CAS  PubMed  Google Scholar 

  83. Jackman KA, Miller AA, Drummond GR, Sobey CG (2009) Importance of NOX1 for angiotensin II-induced cerebrovascular superoxide production and cortical infarct volume following ischemic stroke. Brain Res 1286:215–220

    Article  CAS  PubMed  Google Scholar 

  84. Kahles T, Kohnen A, Heumueller S, Rappert A, Bechmann I, Liebner S, Wittko IM, Neumann-Haefelin T, Steinmetz H, Schroeder K et al (2010) NADPH oxidase Nox1 contributes to ischemic injury in experimental stroke in mice. Neurobiol Dis 40:185–192

    Article  CAS  PubMed  Google Scholar 

  85. Brait VH, Jackman KA, Walduck AK, Selemidis S, Diep H, Mast AE, Guida E, Broughton BR, Drummond GR, Sobey CG (2010) Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab 30:1306–1317

    Article  CAS  PubMed  Google Scholar 

  86. Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood–brain barrier damage in experimental stroke. Stroke 38:3000–3006

    Article  CAS  PubMed  Google Scholar 

  87. Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258

    Article  CAS  PubMed  Google Scholar 

  88. Radermacher KA, Wingler K, Kleikers PW, Altenhofer SA, Hermans JR, Kleinschnitz C, Schmidt HH (2012) The 1027th target candidate in stroke: will NADPH oxidase hold up? Exp Transl Stroke Med 4:11

    Article  CAS  PubMed  Google Scholar 

  89. Duilio C, Ambrosio G, Kuppusamy P, DiPaula A, Becker LC, Zweier JL (2001) Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia. Am J Physiol Heart Circ Physiol 280:H2649–H2657

    CAS  PubMed  Google Scholar 

  90. Weissmann N, Sydykov A, Kalwa H, Storch U, Fuchs B, Mederos y Schnitzler M, Brandes RP, Grimminger F, Meissner M, Freichel M et al (2012) Activation of TRPC6 channels is essential for lung ischaemia–reperfusion induced oedema in mice. Nat Commun 3:649

    Article  PubMed  CAS  Google Scholar 

  91. Clempus RE, Sorescu D, Dikalova AE, Pounkova L, Jo P, Sorescu GP, Schmidt HH, Lassegue B, Griendling KK (2007) Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 27:42–48

    Article  CAS  PubMed  Google Scholar 

  92. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907

    Article  CAS  PubMed  Google Scholar 

  93. Deliri H, McNamara CA (2007) Nox 4 regulation of vascular smooth muscle cell differentiation marker gene expression. Arterioscler Thromb Vasc Biol 27:12–14

    Article  CAS  PubMed  Google Scholar 

  94. Frey RS, Ushio-Fukai M, Malik AB (2009) NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal 11:791–810

    Article  CAS  PubMed  Google Scholar 

  95. Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287:R1014–R1030

    Article  CAS  PubMed  Google Scholar 

  96. Ushio-Fukai M (2006) Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res 71:226–235

    Article  CAS  PubMed  Google Scholar 

  97. Ushio-Fukai M, Alexander RW (2004) Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem 264:85–97

    Article  CAS  PubMed  Google Scholar 

  98. Ushio-Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M, Quinn MT, Pagano PJ, Johnson C, Alexander RW (2002) Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 91:1160–1167

    Article  CAS  PubMed  Google Scholar 

  99. Abid MR, Spokes KC, Shih SC, Aird WC (2007) NADPH oxidase activity selectively modulates vascular endothelial growth factor signaling pathways. J Biol Chem 282:35373–35385

    Article  CAS  PubMed  Google Scholar 

  100. Urao N, Inomata H, Razvi M, Kim HW, Wary K, McKinney R, Fukai T, Ushio-Fukai M (2008) Role of nox2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia. Circ Res 103:212–220

    Article  CAS  PubMed  Google Scholar 

  101. Tojo T, Ushio-Fukai M, Yamaoka-Tojo M, Ikeda S, Patrushev N, Alexander RW (2005) Role of gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in response to hindlimb ischemia. Circulation 111:2347–2355

    Article  CAS  PubMed  Google Scholar 

  102. Distasi MR, Case J, Ziegler MA, Dinauer MC, Yoder MC, Haneline LS, Dalsing MC, Miller SJ, Labarrere CA, Murphy MP et al (2009) Suppressed hindlimb perfusion in Rac2−/− and Nox2−/− mice does not result from impaired collateral growth. Am J Physiol Heart Circ Physiol 296:H877–H886

    Article  CAS  PubMed  Google Scholar 

  103. Haddad P, Dussault S, Groleau J, Turgeon J, Michaud SE, Menard C, Perez G, Maingrette F, Rivard A (2009) Nox2-containing NADPH oxidase deficiency confers protection from hindlimb ischemia in conditions of increased oxidative stress. Arterioscler Thromb Vasc Biol 29:1522–1528

    Article  CAS  PubMed  Google Scholar 

  104. Ebrahimian TG, Heymes C, You D, Blanc-Brude O, Mees B, Waeckel L, Duriez M, Vilar J, Brandes RP, Levy BI et al (2006) NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes. Am J Pathol 169:719–728

    Article  CAS  PubMed  Google Scholar 

  105. Frantz S, Brandes RP, Hu K, Rammelt K, Wolf J, Scheuermann H, Ertl G, Bauersachs J (2006) Left ventricular remodeling after myocardial infarction in mice with targeted deletion of the NADPH oxidase subunit gp91PHOX. Basic Res Cardiol 101:127–132

    Article  CAS  PubMed  Google Scholar 

  106. van den Borne SW, van de Schans VA, Strzelecka AE, Vervoort-Peters HT, Lijnen PM, Cleutjens JP, Smits JF, Daemen MJ, Janssen BJ, Blankesteijn WM (2009) Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc Res 84:273–282

    Article  PubMed  CAS  Google Scholar 

  107. Hoffmeyer MR, Jones SP, Ross CR, Sharp B, Grisham MB, Laroux FS, Stalker TJ, Scalia R, Lefer DJ (2000) Myocardial ischemia/reperfusion injury in NADPH oxidase-deficient mice. Circ Res 87:812–817

    Article  CAS  PubMed  Google Scholar 

  108. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS et al (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci U S A 99:715–720

    Article  CAS  PubMed  Google Scholar 

  109. Dikalova A, Clempus R, Lassegue B, Cheng G, McCoy J, Dikalov S, San Martin A, Lyle A, Weber DS, Weiss D et al (2005) Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112:2668–2676

    Article  CAS  PubMed  Google Scholar 

  110. Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R, Parthasarathy S, Petros JA, Lambeth JD (2001) Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci U S A 98:5550–5555

    Article  CAS  PubMed  Google Scholar 

  111. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401:79–82

    Article  CAS  PubMed  Google Scholar 

  112. Datla SR, Peshavariya H, Dusting GJ, Mahadev K, Goldstein BJ, Jiang F (2007) Important role of Nox4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro. Arterioscler Thromb Vasc Biol 27:2319–2324

    Article  CAS  PubMed  Google Scholar 

  113. Schroder K, Wandzioch K, Helmcke I, Brandes RP (2009) Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 29:239–245

    Article  PubMed  CAS  Google Scholar 

  114. Schroder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, Kruse C, Luedike P, Michaelis UR, Weissmann N et al (2012) Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 110:1217–1225

    Article  PubMed  CAS  Google Scholar 

  115. Maejima Y, Kuroda J, Matsushima S, Ago T, Sadoshima J (2011) Regulation of myocardial growth and death by NADPH oxidase. J Mol Cell Cardiol 50:408–416

    Article  CAS  PubMed  Google Scholar 

  116. Djordjevic T, BelAiba RS, Bonello S, Pfeilschifter J, Hess J, Gorlach A (2005) Human urotensin II is a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells. Arterioscler Thromb Vasc Biol 25:519–525

    Article  CAS  PubMed  Google Scholar 

  117. Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M et al (2006) Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290:L661–L673

    Article  CAS  PubMed  Google Scholar 

  118. Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J (2010) Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res 106:1253–1264

    Article  CAS  PubMed  Google Scholar 

  119. Boueiz A, Damarla M, Hassoun PM (2008) Xanthine oxidoreductase in respiratory and cardiovascular disorders. Am J Physiol Lung Cell Mol Physiol 294:L830–L840

    Article  CAS  PubMed  Google Scholar 

  120. Armitage ME, Wingler K, Schmidt HH, La M (2009) Translating the oxidative stress hypothesis into the clinic: NOX versus NOS. J Mol Med 87:1071–1076

    Article  CAS  PubMed  Google Scholar 

  121. Otani H (2009) The role of nitric oxide in myocardial repair and remodeling. Antioxid Redox Signal 11:1913–1928

    Article  CAS  PubMed  Google Scholar 

  122. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    Article  CAS  PubMed  Google Scholar 

  123. Otani H (2008) Ischemic preconditioning: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 10:207–247

    Article  CAS  PubMed  Google Scholar 

  124. Chen Q, Camara AK, Stowe DF, Hoppel CL, Lesnefsky EJ (2007) Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 292:C137–C147

    Article  CAS  PubMed  Google Scholar 

  125. Choi K, Kim J, Kim GW, Choi C (2009) Oxidative stress-induced necrotic cell death via mitochondria-dependent burst of reactive oxygen species. Curr Neurovasc Res 6:213–222

    Article  CAS  PubMed  Google Scholar 

  126. Loor G, Kondapalli J, Iwase H, Chandel NS, Waypa GB, Guzy RD, Vanden Hoek TL, Schumacker PT (2011) Mitochondrial oxidant stress triggers cell death in simulated ischemia–reperfusion. Biochim Biophys Acta 1813:1382–1394

    Article  CAS  PubMed  Google Scholar 

  127. Perrelli MG, Pagliaro P, Penna C (2011) Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World J Cardiol 3:186–200

    Article  PubMed  Google Scholar 

  128. Dikalov S (2011) Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 51:1289–1301

    Article  CAS  PubMed  Google Scholar 

  129. Gustafsson AB, Gottlieb RA (2008) Heart mitochondria: gates of life and death. Cardiovasc Res 77:334–343

    Article  CAS  PubMed  Google Scholar 

  130. Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517

    Article  CAS  PubMed  Google Scholar 

  131. Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Suzuki T, Maeta H, Abe Y (2005) Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension 45:860–866

    Article  CAS  PubMed  Google Scholar 

  132. Matsuzaki S, Szweda PA, Szweda LI, Humphries KM (2009) Regulated production of free radicals by the mitochondrial electron transport chain: cardiac ischemic preconditioning. Adv Drug Deliv Rev 61:1324–1331

    Article  CAS  PubMed  Google Scholar 

  133. Novelli GP, Adembri C, Gandini E, Orlandini SZ, Papucci L, Formigli L, Manneschi LI, Quattrone A, Pratesi C, Capaccioli S (1997) Vitamin E protects human skeletal muscle from damage during surgical ischemia–reperfusion. Am J Surg 173:206–209

    Article  CAS  PubMed  Google Scholar 

  134. Flaherty JT, Pitt B, Gruber JW, Heuser RR, Rothbaum DA, Burwell LR, George BS, Kereiakes DJ, Deitchman D, Gustafson N et al (1994) Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction. Circulation 89:1982–1991

    Article  CAS  PubMed  Google Scholar 

  135. Rapola JM, Virtamo J, Ripatti S, Huttunen JK, Albanes D, Taylor PR, Heinonen OP (1997) Randomised trial of alpha-tocopherol and beta-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet 349:1715–1720

    Article  CAS  PubMed  Google Scholar 

  136. Bailey DM, Raman S, McEneny J, Young IS, Parham KL, Hullin DA, Davies B, McKeeman G, McCord JM, Lewis MH (2006) Vitamin C prophylaxis promotes oxidative lipid damage during surgical ischemia–reperfusion. Free Radic Biol Med 40:591–600

    Article  CAS  PubMed  Google Scholar 

  137. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297:842–857

    Article  CAS  PubMed  Google Scholar 

  138. Wingler K, Hermans J, Schiffers P, Moens A, Paul M, Schmidt H (2011) NOX 1, 2, 4, 5: counting out oxidative stress. Br J Pharmacol 164:866–883

    Google Scholar 

  139. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: part II: animal and human studies. Circulation 108:2034–2040

    Article  PubMed  Google Scholar 

  140. Guzik TJ, Chen W, Gongora MC, Guzik B, Lob HE, Mangalat D, Hoch N, Dikalov S, Rudzinski P, Kapelak B et al (2008) Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J Am Coll Cardiol 52:1803–1809

    Article  CAS  PubMed  Google Scholar 

  141. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A 107:15565–15570

    Article  CAS  PubMed  Google Scholar 

  142. Zhang M, Brewer AC, Schroder K, Santos CX, Grieve DJ, Wang M, Anilkumar N, Yu B, Dong X, Walker SJ et al (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci U S A 107:18121–18126

    Article  CAS  PubMed  Google Scholar 

  143. Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ (2001) Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(−) and systolic blood pressure in mice. Circ Res 89:408–414

    Article  CAS  PubMed  Google Scholar 

  144. Gianni D, Taulet N, Zhang H, DerMardirossian C, Kister J, Martinez L, Roush WR, Brown SJ, Bokoch GM, Rosen H (2010) A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 5:981–993

    Article  CAS  PubMed  Google Scholar 

  145. Brown SJ, Gianni D, Bokoch G, Mercer BA, Hodder P, Rosen HR (2010) Probe report for NOX1 inhibitors. Probe Reports from the Molecular Libraries Program, National Center for Biotechnology Information, Bethesda

  146. Bhandarkar SS (2009) Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice. J Clin Investig 119:2359–2365

    Google Scholar 

  147. Stielow C, Catar RA, Muller G, Wingler K, Scheurer P, Schmidt HH, Morawietz H (2006) Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem Biophys Res Commun 344:200–205

    Article  CAS  PubMed  Google Scholar 

  148. Sun QA, Hess DT, Wang B, Miyagi M, Stamler JS (2012) Off-target thiol alkylation by the NADPH oxidase inhibitor 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine (VAS2870). Free Radic Biol Med 52:1897–1902

    Article  CAS  PubMed  Google Scholar 

  149. Laleu B, Gaggini F, Orchard M, Fioraso-Cartier L, Cagnon L, Houngninou-Molango S, Gradia A, Duboux G, Merlot C, Heitz F et al (2010) First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J Med Chem 53:7715–7730

    Article  CAS  PubMed  Google Scholar 

  150. Kunz A, Anrather J, Zhou P, Orio M, Iadecola C (2007) Cyclooxygenase-2 does not contribute to postischemic production of reactive oxygen species. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow and Metab 27:545–551

    Article  CAS  Google Scholar 

  151. Li J, Stouffs M, Serrander L, Banfi B, Bettiol E, Charnay Y, Steger K, Krause KH, Jaconi ME (2006) The NADPH oxidase NOX4 drives cardiac differentiation: role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 17:3978–3988

    Article  CAS  PubMed  Google Scholar 

  152. Lyle AN, Deshpande NN, Taniyama Y, Seidel-Rogol B, Pounkova L, Du P, Papaharalambus C, Lassegue B, Griendling KK (2009) Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res 105:249–259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the national and international competitive grant support by the NHMRC, EU, and ERC (HHHWS).

Conflict of interest

HHHWS is a cofounder of Vasopharm GmbH, which has developed a NOX inhibitor, and also holds shares of Vasopharm GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela W. M. Kleikers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleikers, P.W.M., Wingler, K., Hermans, J.J.R. et al. NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med 90, 1391–1406 (2012). https://doi.org/10.1007/s00109-012-0963-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0963-3

Keywords

Navigation