Skip to main content
Log in

Why Do Girls Sustain More Anterior Cruciate Ligament Injuries Than Boys?

A Review of the Changes in Estrogen and Musculoskeletal Structure and Function during Puberty

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Sport is the leading cause of injury among adolescents and girls incur more non-contact anterior cruciate ligament (ACL) ruptures than boys, with this gender disparity in injury incidence apparent from the onset of puberty. Although the mechanisms for this gender disparity in ACL injuries are relatively unknown, hormonal, anatomical and biomechanical factors have been implicated. Puberty is associated with rapid skeletal growth and hormonal influx, both of which are thought to contribute to alterations in ACL metabolic and mechanical properties, as well as changes in lower limb strength and flexibility, ultimately influencing landing technique. Therefore, the aim of this review is to explain (i) the effects of changes in estrogen levels on the metabolic and mechanical properties of the ACL; (ii) changes in musculoskeletal structure and function that occur during puberty, including changes in knee laxity, and lower limb flexibility and strength; and (iii) how these hormonal and musculoskeletal changes impact upon the landing technique displayed by pubescent girls.

Despite evidence confirming estrogen receptors on the ACL, there are still conflicting results as to how estrogen affects the mechanical properties of the ACL, particularly during puberty. However, during this time of rapid growth and hormonal influx, unlike their male counterparts, girls do not display an accelerated muscle strength spurt and the development of their hamstring muscle strength appears to lag behind that of their quadriceps. Throughout puberty, girls also display an increase in knee valgus when landing, which is not evident in boys. Therefore, it is plausible that this lack of a defined strength spurt, particularly of the hamstring muscles, combined with the hormonal effects of estrogen in girls, may contribute to a more ‘risky’ lower limb alignment during landing, in turn, contributing to a greater risk of ACL injury. There is, however, a paucity of longitudinal studies specifically examining the lower limb musculoskeletal structural and functional changes experienced by girls throughout puberty, as well as how these changes are related to estrogen fluctuations characteristic of puberty and their effects on landing biomechanics. Therefore, further research is recommended to provide greater insight as to why pubescent girls are at an increased risk of non-contact ACL injuries during sport compared with boys. Such information will allow the development of evidence-based training programmes aimed at teaching girls to land more safely and with greater control of their lower limbs in an attempt to reduce the incidence of ACL ruptures during puberty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig 1
Fig. 2
Table II
Table III
Table IV
Table V

Similar content being viewed by others

References

  1. Emery CA, Meeuwisse WH, McAllister JR. Survey of sport participation and sport injury in Calgary and area high schools. Clin J Sport Med 2006; 16 (1): 20–6

    Article  PubMed  Google Scholar 

  2. Kelm J, Ahlhelm F, Anagnostakos K, et al. Gender-specific differences in school sports injuries. Sportverletzung Sportschaden 2004; 18 (4): 179–84

    Article  PubMed  CAS  Google Scholar 

  3. Michaud PA, Renaud A, Narring F. Sports activities related to injuries? A survey among 9–19 year olds in Switzerland. Inj Prev 2001; 7 (1): 41–5

    Article  PubMed  CAS  Google Scholar 

  4. Shea KG, Pfeiffer R, Wang JH, et al. Anterior cruciate ligament injury in pediatric and adolescent soccer players: an analysis of insurance data. J Pediatr Orthop 2004; 24 (6): 623–8

    Article  PubMed  Google Scholar 

  5. Powell JW, Barber-Foss KD. Sex-related injury patterns among selected high school sports. Am J Sports Med 2000; 28 (3): 385–91

    PubMed  CAS  Google Scholar 

  6. Arendt EA, Agel J, Dick R. Anterior cruciate ligament injury patterns among collegiate men and women. J Athletic Train 1999; 34 (2): 86–92

    CAS  Google Scholar 

  7. Slauterbeck JR, Hickox JR, Beynnon B, et al. Anterior cruciate ligament biology and its relationship to injury forces. Orthop Clin North Am 2006; 37 (4): 585–91

    Article  PubMed  Google Scholar 

  8. Boden BP, Sheehan FT, Torg JS, et al. Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Sur 2010; 18 (9): 520–7

    Google Scholar 

  9. Chandrashekar N, Mansouri H, Slauterbeck JR, et al. Sex- based differences in the tensile properties of the human anterior cruciate ligament. J Biomech 2006; 39 (16): 2943–50

    Article  PubMed  Google Scholar 

  10. Deie M, Sakamaki Y, Sumen Y, et al. Anterior knee laxity in young women varies with their menstrual cycle. Int Orthop 2002; 26 (3): 154–6

    Article  PubMed  Google Scholar 

  11. Ford KR, Shapiro R, Myer GD, et al. Longitudinal sex differences during landing in knee abduction in young athletes. Med Sci Sport Exerc 2010; 42 (10): 1923–31

    Article  Google Scholar 

  12. Hewett TE, Myer GD, Ford KR. Decrease in neuromuscular control about the knee with maturation in female athletes. J Bone Joint Surg Am 2004; 86 (8): 1601–8

    PubMed  Google Scholar 

  13. Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes. Am J Sports Med 2005; 33 (4): 492–501

    Article  PubMed  Google Scholar 

  14. Myer GD, Ford KR, Paterno MV, et al. The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am J Sports Med 2008; 36 (6): 1073–80

    Article  PubMed  Google Scholar 

  15. Quatman CE, Ford KR, Myer GD, et al. The effects of gender and pubertal status on generalized joint laxity in young athletes. J Sci Med Sport 2008; 11 (3): 257–63

    Article  PubMed  Google Scholar 

  16. Round JM, Jones DA, Honour JW, et al. Hormonal factors in the development of differences in strength between boys and girls during adolescence: a longitudinal study. Ann Hum Biol 1999; 26 (1): 49–62

    Article  PubMed  CAS  Google Scholar 

  17. Slauterbeck J, Clevenger C, Lundberg W, et al. Estrogen level alters the failure load of the rabbit anterior cruciate ligament. J Orthop Res 1999; 17 (3): 405–8

    Article  PubMed  CAS  Google Scholar 

  18. Malina R, Bouchard C, Bar-Or O. Growth, maturation and physical activity. 2nd ed. Champaign (IL): Human Kinetics, 2004

    Google Scholar 

  19. Dvorak J, George J, Junge A, et al. Age determination by magnetic resonance imaging of the wrist in adolescent male football players. Br J Sports Med 2007; 41 (1): 45–52

    Article  PubMed  Google Scholar 

  20. Hauspie R, Bielicki T, Koniarek J. Skeletal maturity at onset of the adolescent growth spurt and at peak velocity for growth in height: a threshold effect? Ann Hum Biol 1991; 18 (1): 23–9

    Article  PubMed  CAS  Google Scholar 

  21. Tanner J. Growth at adolescence. 2nd ed. Oxford: Blackwell Scientific Publications Ltd, 1962

    Google Scholar 

  22. Tanner JM, Whitehouse RH, Marubini E, et al. The adolescent growth spurt of boys and girls of the harpenden growth study. Ann Hum Biol 1976; 3 (2): 109–26

    Article  PubMed  CAS  Google Scholar 

  23. Taylor S, Whincup P, Hindmarsh P, et al. Performance of a new pubertal self-assessment questionnaire: a preliminary study. Paediatr Perinat Ep 2001; 15 (1): 88–94

    Article  CAS  Google Scholar 

  24. Faust MS. Somatic development of adolescent girls. Monogr Soc Res Child 1977; 42: 1–90

    Article  CAS  Google Scholar 

  25. Mirwald RL, Baxter-Jones ADG, Bailey DA, et al. An assessment of maturity from anthropometric measurements. Med Sci Sport Exerc 2002; 34 (4): 689–94

    Article  Google Scholar 

  26. Gunther ALB, Karaolis-Danckert N, Kroke A, et al. Dietary protein intake throughout childhood is associated with the timing of puberty. J Nut 2010; 140 (3): 565–71

    Article  Google Scholar 

  27. Iuliano-Burns S, Mirwald RL, Bailey DA. Timing and magnitude of peak height velocity and peak tissue velocities for early, average, and late maturing boys and girls. Am J Hum Biol 2001; 13 (1): 1–8

    Article  PubMed  CAS  Google Scholar 

  28. Kanbur NO, Derman O, Kinik E. The relationships between pubertal development, IGF-1 axis, and bone formation in healthy adolescents. J Bone Miner Metab 2005; 23 (1): 76–83

    Article  PubMed  CAS  Google Scholar 

  29. Jensen RK, Nassas G. Growth of segment principal moments of inertia between four and twenty years. Med Sci Sport Exerc 1988; 20 (6): 594–604

    Article  CAS  Google Scholar 

  30. Hawkins D, Metheny J. Overuse injuries in youth sports: biomechanical considerations. Med Sci Sport Exerc 2001; 33 (10): 1701–7

    Article  CAS  Google Scholar 

  31. Jensen RK. Growth of estimated segment masses between four and sixteen years. Hum Biol 1987; 59 (1): 173–89

    PubMed  CAS  Google Scholar 

  32. Barber-Westin SD, Galloway M, Noyes FR, et al. Assessment of lower limb neuromuscular control in prepubescent athletes. Am J Sports Med 2005; 33 (12): 1853–60

    Article  PubMed  Google Scholar 

  33. McNair PJ, Marshall RN, Matheson JA. Important features associated with acute anterior cruciate ligament injury. New Zeal Med J 1990; 103 (901): 537–9

    PubMed  CAS  Google Scholar 

  34. Liu SH, Al-Shaikh RA, Panossian V, et al. Estrogen affects the cellular metabolism of the anterior cruciate ligament: a potential explanation for female athletic injury. Am J Sports Med 1997; 25 (5): 704–9

    Article  PubMed  CAS  Google Scholar 

  35. Liu SH, Shaikh RA, Panossian V, et al. Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. J Orthop Res 1996; 14: 526–33

    Article  PubMed  CAS  Google Scholar 

  36. Nigg B, Herzog W. Biomechanics of the musculo-skeletal system. Chichester: John Wiley & Sons, 1994

    Google Scholar 

  37. Smith BA, Livesay GA, Woo SL. Biology and biomechanics of the anterior cruciate ligament. Clin Sports Med 1993; 12 (4): 637–70

    PubMed  CAS  Google Scholar 

  38. Liu SH, Yang R-S, Al-Shaikh R, et al. Collagen in tendon, ligament, and bone healing: a current review. Clin Orthop Rel Res 1995; 318: 265–78

    Google Scholar 

  39. Hamlet WP, Liu SH, Panossian V, et al. Primary immunolocalization of androgen target cells in the human anterior cruciate ligament. J Orthop Res 1997; 15 (5): 657–63

    Article  PubMed  CAS  Google Scholar 

  40. Faryniarz DA, Bhargava M, Lajam C, et al. Quantitation of estrogen receptors and relaxin binding in human anterior cruciate ligament fibroblasts. In Vitro Cell Dev Biol 2006; 42 (7): 176–81

    Article  CAS  Google Scholar 

  41. Yu WD, Liu SH, Hatch JD, et al. Effect of estrogen on cellular metabolism of the human anterior cruciate ligament. Clin Orthop Rel Res 1999; 366: 229–38

    Article  Google Scholar 

  42. Yoshida A, Morihara T, Kajikawa Y, et al. In vivo effects of ovarian steroid hormones on the expressions of estrogen receptors and the composition of extracellular matrix in the anterior cruciate ligament in rats. Connect Tissue Res 2009; 50 (2): 121–31

    Article  PubMed  CAS  Google Scholar 

  43. Seneviratne A, Attia E, Williams RJ, et al. The effect of estrogen on ovine anterior cruciate ligament fibroblasts. Am J Sports Med 2004; 32 (7): 1613–8

    Article  PubMed  Google Scholar 

  44. Toyoda T, Matsumoto H, Fujikawa K, et al. Tensile load and the metabolism of anterior cruciate ligament cells. Clin Orthop Rel Res 1998; 353: 247–55

    Article  Google Scholar 

  45. Lee C-Y, Liu X, Smith CL, et al. The combined regulation of estrogen and cyclic tension on fibroblast biosynthesis derived from anterior cruciate ligament. Matrix Biol 2004; 23 (5): 323–9

    Article  PubMed  CAS  Google Scholar 

  46. Lee C-Y, Smith CL, Zhang X, et al. Tensile forces attenuate estrogen-stimulated collagen synthesis in the ACL. Biochem Biophys Res Commun 2004; 317 (4): 1221–5

    Article  PubMed  CAS  Google Scholar 

  47. Romani W, Langenberg P, Belkoff S. Sex, collagen expression, and anterior cruciate ligament strength in rats. J Athl Train 2010; 45 (1): 22–8

    Article  PubMed  Google Scholar 

  48. Woodhouse E, Schmale GA, Simonian P, et al. Reproductive hormone effects on strength of the rat anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 2007; 15 (4): 453–60

    Article  PubMed  Google Scholar 

  49. Shelburne KB, Pandy MG, Anderson FC, et al. Pattern of anterior cruciate ligament force in normal walking. J Biomech 2004; 37 (6): 797–805

    Article  PubMed  Google Scholar 

  50. McNair PJ, Prapavessis H. Normative data of vertical ground reaction forces during landing from a jump. J Sci Med Sport 1999; 2 (1): 86–8

    Article  PubMed  CAS  Google Scholar 

  51. Beynnon BD, Bernstein IM, Belisle A, et al. The effect of estradiol and progesterone on knee and ankle joint laxity. Am J Sports Med 2005; 33 (9): 1298–304

    Article  PubMed  Google Scholar 

  52. Pollard CD, Braun B, Hamill J. Influence of gender, estrogen and exercise on anterior knee laxity. Clin Biomech 2006; 21 (10): 1060–6

    Article  Google Scholar 

  53. Alter MJ. Science of flexibility. 2nd ed. Champaign (IL): Human Kinetics, 1996

    Google Scholar 

  54. Oatis C. Kinesiology: the mechanics and pathomechanics of human movement. 1st ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2004

    Google Scholar 

  55. Uhorchak JM, Scoville CR, Williams GN, et al. Risk factors associated with noncontact injury of the anterior cruciate ligament. Am J Sports Med 2003; 31 (6): 831–42

    PubMed  Google Scholar 

  56. Baxter M. Assessment of normal pediatric knee ligament laxity using the genucom. J Pediatr Orthop 1988; 8: 543–5

    Article  Google Scholar 

  57. Falciglia F, Guzzanti V, Di Ciommo V, et al. Physiological knee laxity during pubertal growth. Bull NYU Hosp Jt Dis 2009; 67 (4): 325–9

    PubMed  Google Scholar 

  58. Costello A, Grey A, Chiarello C. Anterior cruciate ligament laxity and strength of quadriceps, hamstrings, and hip abductors in young pre-pubescent female soccer players: a three-year prospective longitudinal pilot study. Orthop Prac 2011; 23 (1): 7–12

    Google Scholar 

  59. Ahmad CS, Clark AM, Heilmann N, et al. Effect of gender and maturity on quadriceps-to-hamstring strength ratio and anterior cruciate ligament laxity. Am J Sports Med 2006; 34 (3): 370–4

    Article  PubMed  Google Scholar 

  60. Loko J, Aule R, Sikkut T, et al. Motor performance status in 10 to 17-year-old Estonian girls. Scand J Med Sci Sport 2000; 10: 109–13

    Article  CAS  Google Scholar 

  61. Heras Yague P, De La Fuente J. Changes in height and motor performance relative to peak height velocity: A mixed-longitudinal study of Spanish boys and girls. Am J Hum Biol 1998; 10: 647–60

    Article  Google Scholar 

  62. Merni F, Balboni M, Bargellini S, et al. Differences in males and females in joint movement range during growth. Med Sport 1981; 15: 168–75

    Google Scholar 

  63. Volver A, Viru A, Viru M. Improvement of motor abilities in pubertal girls. J Sport Med Phys Fit 2000; 40 (1): 17–25

    CAS  Google Scholar 

  64. DeVita P, Skelly W. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sport Exerc 1992; 24: 108–15

    CAS  Google Scholar 

  65. Parker DF, Round JM, Sacco P, et al. A cross-sectional survey of upper and lower limb strength in boys and girls during childhood and adolescence. Ann Hum Biol 1990; 17 (3): 199–211

    Article  PubMed  CAS  Google Scholar 

  66. Seger JY, Thorstensson A. Muscle strength and electro- myogram in boys and girls followed through puberty. Eur J Appl Physiol 2000; 81 (1–2): 54–61

    Article  PubMed  CAS  Google Scholar 

  67. Ramos E, Frontera WR, Llopart A, et al. Muscle strength and hormonal levels in adolescents: gender related differences. Int J Sports Med 1998; 19 (8): 526–31

    Article  PubMed  CAS  Google Scholar 

  68. Barber-Westin S, Noyes F, Galloway M. Jump-land characteristics and muscle strength development in young athletes: a gender comparison of 1140 athletes 9 to 17 years of age. Am J Sports Med 2006; 34 (3): 375–84

    Article  PubMed  Google Scholar 

  69. Louw Q, Grimmer K, Vaughan C. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: a case-control study. BMC Musculoskelet Disord 2006; 7: 22–8

    Article  PubMed  Google Scholar 

  70. Pappas E, Sheikhzadeh A, Hagins M, et al. The effect of gender and fatigue on the biomechanics of bilateral landings from ajump: peak values. J Sport Sci Med 2007; 6: 77–84

    Google Scholar 

  71. Cowling EJ, Steele JR, McNair PJ. Effect of verbal instructions on muscle activity and risk of injury to the anterior cruciate ligament during landing. Br J Sports Med 2003; 37 (2): 126–30

    Article  PubMed  CAS  Google Scholar 

  72. Ford KR, Myer GD, Hewett TE. Valgus knee motion during landing in high school female and male basketball players. Med Sci Sports Exerc 2003; 35 (10): 1745–50

    Article  PubMed  Google Scholar 

  73. McLean SG, Huang X, Su A, et al. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin Biomech 2004; 19 (8): 828–38

    Article  Google Scholar 

  74. Hewett TE, Myer GD, Ford KR, et al. Preparticipation physical examination using a box drop vertical jump test in young athletes: the effects of puberty and sex. Clin J Sports Med 2006; 16 (4): 298–304

    Article  Google Scholar 

  75. Quatman C, Ford K, Myer G, et al. Maturation leads to gender differences in landing force and vertical jump performance: a longitudinal study. Am J Sports Med 2006; 34 (5): 806–13

    Article  PubMed  Google Scholar 

  76. Ford KR, Myer GD, Hewett TE. Longitudinal effects of maturation on lower extremity joint stiffness in adolescent athletes. Am J Sports Med 2010; 38 (9): 1829–37

    Article  PubMed  Google Scholar 

  77. Wild CY, Steele JR, Munro BJ. How are muscle activation patterns during dynamic landing movements affected by growth and development? Implications for lower limb injuries [abstract]. In: ASICS Conference of Science and Medicine in Sport; 2008 October 16–18, Hamilton Island, Australia. J Sci Med Sport 2008; 11 Suppl. 6: 54

    Google Scholar 

  78. Kernozek TW, Torry MR, Iwasaki M. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am J Sports Med 2008; 36 (3): 554–65

    Article  PubMed  Google Scholar 

  79. McNitt-Gray JL, Hester DM, Mathiyakom W, et al. Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force. J Biomech 2001; 34 (11): 1471–82

    Article  PubMed  CAS  Google Scholar 

  80. Cowling EJ, Steele JR. Is lower limb muscle synchrony during landing affected by gender? Implications for variations in ACL injury rates. J Electromyogr Kinesiol 2001; 11 (4): 263–8

    Article  PubMed  CAS  Google Scholar 

  81. Steele JR, Brown JM. Effects of chronic anterior cruciate ligament deficiency on muscle activation patterns during an abrupt deceleration task. Clin Biomech 1999; 14 (4): 247–57

    Article  CAS  Google Scholar 

  82. Gauffin HK, Tropp H. Altered movement and muscular-activation patterns during the one-legged jump in patients with an old anterior cruciate ligament rupture. Am J Sports Med 1992; 20 (2): 182–92

    Article  PubMed  CAS  Google Scholar 

  83. Jones S, Lyons R, Sibert J, et al. Changes in sports injuries to children between 1983 and 1998: comparison of case series. J Pub Health Med 2001; 23 (4): 268–71

    Article  CAS  Google Scholar 

  84. Price R, Hawkins R, Hulse M, et al. The football association medical research programme: an audit of injuries in academy youth football. Br J Sports Med 2004; 38: 466–71

    Article  PubMed  CAS  Google Scholar 

  85. Boden BP, Torg JS, Knowles SB, et al. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med 2009; 37 (2): 252–9

    Article  PubMed  Google Scholar 

  86. Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med 2009; 43 (6): 417–22

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used in preparing this review. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Y. Wild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wild, C.Y., Steele, J.R. & Munro, B.J. Why Do Girls Sustain More Anterior Cruciate Ligament Injuries Than Boys?. Sports Med 42, 733–749 (2012). https://doi.org/10.1007/BF03262292

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03262292

Keywords

Navigation