Supplementary material | Study | Population
(mean age) | Mean Interventions DOS (range) | | Duration of treatment | Follow up | Pain score | Function score | |-------------------------|--|--------------------------------|---|---------------------------|---------------------|---|-------------------| | Abat et al.
(2016) | N=64 athletes
(31y) | 29.2m | 1)Electro-
physiotherapy +
eccentric exercise
n=32
2)US-guided galvanic
electrolysis +
eccentric exercise
n=32 | 8 weeks | 0, 8w | - | VISA-P
(0-100) | | Agergaard et al. (2021) | N=44 athletes
(30.6y) | 7.1m (3-
12m) | 1)Moderate, slow
resistance exercise
n=23
2)Heavy slow
resistance exercise
n=21 | Exercise for 12 weeks | 0, 12w, 52w | NRS
(0-10) –
during sports | VISA-P
(0-100) | | Bahr et al.
(2006) | N=35 athletes
(40 tendons)
(31y) | 33m (6-
100m) | 1)Eccentric exercise
(decline squat) n=20
tendons
2)Surgery n=20
tendons | Exercise for 12 weeks min | 0, 12w, 26w,
52w | VAS (0-10) –
during
functional
tests | VISA-P
(0-100) | | Breda et al.
(2021) | N=76 athletes
(24y) | >1y
(median) | 1) Progressive
tendon-loading
exercise n=38
2)Eccentric exercise
n=38 | Exercise for 24 weeks | 0, 12w, 24w | - | VISA-P
(0-100) | | Cannell et al
(2001) | N=19 athletes
(26y) | 3.6m
(1.6-
6.1m) | 1)Eccentric exercise
(drop squat) n=10
2)Concentric exercise
n=9 | Exercise daily for 12 weeks | 0, 6w, 12w | VAS (0-10) -
unspecified | - | |---------------------------|---|------------------------|---|--|---------------------------------------|---|-------------------| | Clarke et al.
(2011) | N=60 tendons
(46 patients)
(36y) –
unspecified
population | 11.1m | 1)Injection of collagen-producing cells derived from dermal fibroblasts and suspended in autologous plasma + eccentric exercise n=33 2)Injection of autologous plasma + eccentric exercise n=27 | Single-injection | 0, 6w, 3m,
6m | - | VISA-P
(0-100) | | De Vries et al.
(2016) | N=97 athletes
(27y) | 18m
(?m-?m) | 1)Patellar strap n=21 2)Sports taping n=18 3)Placebo taping n=16 4)No treatment n=14 | 1 week | 0, 1w | VAS (0-100) –
during and
after sports | - | | Dragoo et al.
(2014) | N=23 (35y) –
unspecified
population | Not
stated | 1)Dry needling + eccentric exercise n=13 2)PRP + eccentric exercise n=10 | A single treatment with dry needling and PRP Eccentric programme for the duration of the study | 0, 3w, 6w,
9w, 12w,
≥26w | VAS (0-10) -
unspecified | VISA-P
(0-100) | | Frohm et al.
(2007) | N=20 athletes
(27y) | Not
stated
(>3m) | 1)Eccentric device
(Bromsman) n=11 | Supervised eccentric exercise twice weekly for 12 weeks | Weekly.
Isokinetic
tests 0, 12w | VAS (0-10) -
unspecified | VISA-P
(0-100) | Supplemental material | | | | 2)HA injection +
eccentric exercise
n=15 | | | | | |-------------------------------|---|-------------------|--|--|--------------------------|---|-------------------| | Kongsgaard et
al. (2009) | N=37 athletes
(32.4y) | 18.3m
(>3-36m) | 1)Corticosteroid injection n=12 2)Eccentric exercise n=12 3)Heavy slow resistance exercise n=13 | 2 injections over 4
weeks
Exercise for 12 weeks | 0, 12w, 24w | VAS (0-100) –
during sports | VISA-P
(0-100) | | Lee et al.
(2017) | N=34 athletes
(22.6y) | 33.6m | 1)f-ESWT + eccentric
exercise n=17
2)Sham ESWT +
eccentric exercise
n=17 | 6 sessions of ESWT
over 6 weeks
Eccentric exercise for
12 weeks | 0, 12w | VAS (0-10) –
during
activity | VISA-P
(0-100) | | Lopez-Royo et
al. (2021) | N=50 athletes
(32.5y) | >3m | 1) Dry needling + eccentric exercise n=16 2) Percutaneous needle electrolysis + eccentric exercise n=17 3) Eccentric exercise n=17 | 4 needling sessions over 8 weeks | 0, 10w, 22w | VAS (0-10) –
over last 24
hours | VISA-P
(0-100) | | Pietrosimone
et al. (2020) | N=28 athletes
(only N=13 used
as remaining 15
asymptomatic)
(19.6y) | >4m | 1) Isometric exercise
n=13
2)Sham
transcutaneous
electric nerve
stimulator n=13 | Single session | 0, post-
intervention | VAS (0-10) –
during
functional
tests | - | Supplemental material Supplemental material | | | | 2) LP-PRP + exercise
n=10
The exercises
included isotonic,
followed by
concentric and then
eccentric loading | stem cells injection 23
days later
Group 2 received LP-
PRP injections at days
0 and 23 | | | | |---|--------------------------|------------------|--|---|------------------------|---|-------------------| | Scott et al.
(2019) | N=61 athletes
(32y) | 2.1y
(>6m) | 1)LR-PRP n=20
2)LP-PRP n=21
3)Saline n=20 | A single injection
followed by 6 weeks of
supervised exercise | 0, 6w, 12w,
6m, 12m | NRS (0-10) –
during
activity | VISA-P
(0-100) | | Stasinopoulos
&
Stasinopoulos
(2004) | N=30 athletes
(28y) | Not
stated | 1)Eccentric exercise +
stretching n=10
2)Pulsed ultrasound
n=10
3)Transverse friction | 4 weeks | 0, 4w, 8w,
16w | Non-
numerical
scale | _ | | Steunebrink et al. (2013) | N=33 athletes
(32.9y) | 48w | 1)Topical GTN + eccentric exercise n=16 2)Topical Placebo + eccentric exercise n=17 | One patch daily for 12 weeks Eccentric exercise for 12 weeks | 0, 6w, 12w,
24w | VAS (0-10) –
during sports | VISA-P
(0-100) | | Taunton et al. (2003) | N=20 athletes
(?y) | Not
stated | 1)ESWT n=10
2)Placebo ESWT n=10 | 3 to 5 sessions over 7 weeks | 0, 5w, 12w | - | VISA-P
(0-100) | | Thijs et al.
(2017) | N=52 athletes
(27.3y) | 23m (3-
120m) | 1)f-ESWT + eccentric
exercise n=22
2)Sham ESWT +
eccentric exercise
n=30 | Exercise (decline
squat) for 12 weeks
ESWT 3 sessions over 2
weeks | 0, 6w, 12w,
24w | NRS (0-10) –
during
functional
tests | VISA-P
(0-100) | | | | | Eccentric exercise (decline squat) twice daily for 12 weeks | | | | | |-------------------------------|---|-------------------|---|---|--|--|-------------------| | Van Ark et al.
(2016) | N=29 athletes
(23y) | 35.8m
(1-120m) | 1)Isometric exercise
n=13
2)Isotonic exercise
n=16 | 4 weeks | 0, 4w | NRS (0-10) –
during
functional
tests | VISA-P
(0-100) | | Van der Worp
et al. (2014) | N=43 athletes
(31.1y) | 35.5m
(>3m) | 1) f-ESWT + eccentric
exercise n=21
2) r-ESWT + eccentric
exercise n=22 | 3 sessions over 2
weeks | 0, 7w, 14w | VAS (0-10) – during activities, sports and decline squat | VISA-P
(0-100) | | Vetrano et al.
(2013) | N=46 athletes
(26.9y) | 18.2m
(>3m) | 1)LR-PRP n=23 2)f-ESWT n=23 Both groups received a home exercise programme | PRP 2 injections over 2
weeks
ESWT 3 sessions over 1
week | 0, 2m, 6m,
12m | VAS (0-10) –
during
functional
tests | VISA-P
(0-100) | | Visnes et al
(2005) | N=29 athletes
(26.6y) | 73.6m | 1)Eccentric exercise
(decline squat) n=13
2)Standard training
n=16 | Exercise twice daily for 12 weeks | 0, 1-12w,
18w, 40w | VAS (0-10) –
during
exercise | VISA-P
(0-100) | | Wang et al.
(2007) | N=50 athletes
(54 tendons)
(29.8y) | 13.8m
(6-64m) | 1)ESWT n=27 2)"Conservative treatments" (NSAIDs, exercise, strap, physiotherapy) n=23 | A single session of ESWT Duration of "conservative treatments" not stated | 0, 1m, 3m,
6m, 12m,
then once a
year up to
53m | VAS (0-10) –
on palpation
and walking
up and down
stairs | VISA (0-
100) | | Warden et al.
(2008) | N=37 (27y) –
unspecified
population | 3.8y
(>6m) | 1)US + eccentric
exercise n=17 | US and exercise for 12 weeks | 0, 12w | VAS (0-10) –
during
activity | VISA-P
(0-100) | | | | | 2)Sham US +
eccentric exercise
n=20 | | | | | |---------------------------|--|-----------------|---|--|-------------------------|--|-------------------| | Willberg et al.
(2011) | N=52 tendons
(45 athletes)
(26y) | 22m (6-
60m) | 1)Sclerosing polidocanol injections n=26 2)Arthroscopic surgery n=26 | Polidocanol maximum 3 injections 6 weeks apart A single treatment with surgery | 0, 2w, 6-8w,
6m, 12m | VAS (0-10) –
during sports
and at rest | - | | Young et al.
(2005) | N=17 athletes
(27.3y) | Not
stated | 1)Eccentric exercise
(decline squat) n=9
2)Eccentric exercise
(step squat) n=8 | 12 weeks | 0, 12w, 12m | VAS (0-10) – during activity | VISA-P
(0-100) | | Zwerver et al.
(2011) | N=62 athletes
(25y) | 7.7m | 1)f-ESWT n=31
2) Sham ESWT n=31 | ESWT 3 sessions over 2 weeks | 0, 1w, 12w,
22w | VAS (0-10) -
during
activities,
sports and
functional
tests | VISA-P
(0-100) | Suppl. Table 1. Characteristics of the included randomised controlled trials (participants, interventions, comparators and outcome measures). ESWT, extracorporeal shockwave therapy; f-ESWT, focal ESWT; GTN, glyceryl trinitrate; m, months;HA, hyaluronic acid; LP-PRP, leucocyte-poor PRP; LR-PRP, leucocyte-rich PRP; NRS, numerical rating scale; NSAIDs, non-steroidal anti-inflammatory drugs; PRP, platelet-rich plasma; r-ESWT, radial ESWT; US, ultrasound; VAS, visual analogue scale; VISA-P, Victorian Institute of Sports Assessment – Patellar; w, weeks; y, years. | | | (Cochran | e's Collabor | Internal Va
ation Tool | - | ng Risk of | Bias) | | | |---------------------------|----------------------------------|------------------------|--------------------------------------|------------------------------|------------------------------------|------------------------|---|---------------------|--| | Study (year) | | ection
vias | Performance
bias | Detection
bias | Attrition
bias | Reporting bias | Other | Overall risk | Justification | | | Random
sequence
generation | Allocation concealment | Blinding of
patients and
staff | Blinding of outcome measures | Completeness
of outcome
data | Selective
reporting | | | | | Abas et al.
(2016) | Low | ? | High | ? | Low | High | High (no power calculation) | High | Single-blinded, inappropriate reporting
of results, concealment process and
blinding of assessment not described | | Agergaard et al. (2021) | Low | Low | High | Low | Low | Low | Low | Low | - | | Bahr et al.
(2006) | Low | Low | High | High | Low | Low | Low | High | Non-blinded | | Breda et al.
(2021) | Low | Low | High | Low | Low | Low | Low | Low | - | | Cannell et al
(2001) | Low | Low | High | Low | Low | Low | High (no power calculation, small population) | High | Single-blinded, small population | | Clarke et al.
(2011) | Low | ? | Low | Low | Low | Low | Low | Low | - | | De Vries et al.
(2016) | High | ? | High | ? | High | Low | Low | High | Inappropriate randomisation. Single-
blinded, significant loss to follow up
(29%) | | Dragoo et al.
(2014) | Low | Low | Low | Low | Low | Low | High (baseline age difference) | Low | - | | Frohm et al
(2007) | ? | ? | High | ? | Low | Low | High (no power calculation, small population) | High | Single-blinded, small population,
randomisation/concealment process
and blinding of assessment not
described | | Hoksrud et al.
(2006) | Low (Only "treatment period 1" of study included in systematic review) | | Holden et al.
(2020) | Low | Low | Low | High | Low | Low | Low | Low | - | | Jonsson et al
(2005) | ş | Ş | High | ? | High | Low | High (population
not enough for
power) | High | Single-blinded, small population,
randomisation/concealment process
and blinding of assessment not
described, significant loss to follow up
(21%) | |-----------------------------|-----|-----|------|------|------|-----|---|------|---| | Kaux et al.
(2016) | ? | ? | ? | ? | ? | Low | High (no power
calculation, small
population,
baseline difference
in pain) | High | Small population, baseline differences
between groups (may reflect
inappropriate randomisation), no
details available for selection,
performance, detection and attrition
bias | | Kaux et al.
(2019) | ? | ? | High | High | ? | Low | High (baseline
difference in pain) | High | Non-blinded, baseline differences
between groups (may reflect
inappropriate randomisation),
randomisation/concealment process
not described | | Kongsgaard et al. (2009) | Low | ? | High | Low | Low | Low | Low | Low | - | | Lopez-Royo et
al. (2021) | Low - | | Lee et al.
(2017) | ? | ? | High | ? | Low | Low | Low | High | Single-blinded,
randomisation/concealment process
and blinding of assessment not
described | | Pietrosimone et al. (2020) | Low | Low | High | Low | Low | Low | Low | Low | - | | Resteghini et al. (2016) | Low | Low | Low | Low | Ş | Low | Low | Low | - | | Rigby et al.
(2015) | Low | Low | ? | High | ? | Low | High (baseline difference in pain, small population, no power calculation, acute and chronic tendinopathy patients) | High | Single-blinded, baseline difference
between groups (may reflect
inappropriate randomisation), no
details about completeness of outcome
data, no power calculation, mixture of
acute and chronic tendinopathy
patients | | Rio et al.
(2017) | Low | Low | High | High | High | Low | High (no exclusion criteria) | High | Non-blinded, significant loss to follow up (38%), no exclusion criteria | |---|------|-----|------|------|------|------|--|------|---| | Rio et al.
(2015) | Low | Low | High | ? | Low | Low | High (acute and chronic tendinopathy patients) | High | Single-blinded, no description of
blinding of assessment, mixture of
acute and chronic tendinopathy
patients | | Rodas et al.
(2021) | Low | ? | High | Low | Low | Low | High (small population) | High | Small population, concealment process not described | | Scott et al.
(2019) | High | Low | Low | High | Low | High | Low | High | Single-blinded, inappropriate
randomisation, inadequate reporting of
results (no p values) | | Stasinopoulos
&
Stasinopoulos
(2004) | Low | ? | High | Low | Low | High | High (no power
calculation, small
population, no
baseline pain data) | High | Single-blinded, small population, no
baseline pain data, non-clinically
relevant outcome measures
(categorical pain scale) | | Steunebrink et al. (2013) | Low | Low | ? | ? | Low | Low | High (baseline
difference in pain) | High | Baseline difference between groups
(may reflect inappropriate
randomisation), blinding processes not
described | | Taunton et al.
(2003) | ? | Low | High | Low | Low | Low | High (no power
calculation, only
mean values
reported for
results) | High | Patients not blinded any more at 12 week follow up, randomisation process not described, small sample with no power calculation, inadequate reporting of results) | | Thijs et al.
(2017) | Low - | | Van Ark et al.
(2016) | Low | Low | High | High | High | Low | High (acute and chronic tendinopathy patients) | High | Non-blinded, significant loss to follow up (38%), no exclusion criteria | | Van der Worp
et al. (2014) | Low | Low | Low | Low | Low | Low | High (population
not enough for
power) | Low | - | | Vetrano et al.
(2013) | Low | ? | High | Low | Low | Low | ? (no power calculation but large population) | Low | - | | Visnes et al
(2005) | High | ? | High | ? | Low | Low | High (no power calculation, small population) | High | Inappropriate randomisation/concealment, single- blinded, blinding of assessment not described, small population | |---------------------------|------|-----|------|------|------|------|--|------|--| | Wang et al.
(2007) | High | ? | High | ? | Low | High | Low | High | Single-blinded, inappropriate
randomisation, inappropriate reporting
of results, concealment process and
blinding of assessment not described | | Warden et al.
(2008) | Low | Low | Low | Low | High | Low | High (no power calculation, small sample) | Low | - | | Willberg et al.
(2011) | Low | Low | High | High | Low | Low | Low | High | Non-blinded | | Young et al.
(2005) | Low | Low | High | Low | Low | Low | High (no power calculation, small population) | High | Single-blinded, small population | | Zwerver et al.
(2011) | Low | Low | Low | Low | Low | Low | High (population
not enough for
power but large) | Low | - | Suppl. Table 2. Risk of bias assessment for the included studies with justification where studies deemed as high overall risk of bias. | Comparison | Study | Pain | (VAS 0 | -10) | MD | VAS (95% CI | 1) | Functi | on (VIS
100) | A-P 0- | MD | VISA-P (95% (| CI) | |--|--------------------------------|----------------------|-------------------|------|----------------------------------|---------------------|----|---------------------|-------------------|--------|------------------------------------|---------------------|-----| | | Follow up | ST | MT | LT | ST | MT | LT | ST | MT | LT | ST | MT | L | | Eccentric (1) vs
Concentric (2) | Cannell et al
(2001) | \leftrightarrow | - | - | -1.2
(-2.4, 0) | - | - | - | - | - | - | - | | | exercise | Jonsson et al
(2005) | + | - | - | -4.4
(-5.6, -3.2) | - | - | ↑ | - | - | +44.6
(35, 54.2) | - | | | Overall Eccentric (1) vs
exercise
(Certainty of Evidence) | | ↔
(low) | - | - | -2.8
(-5.9, 0.3)^
(low) | - | - | - | - | - | - | - | | | <u>f</u> -ESWT + Eccentric
exercise (1) vs sham | Lee et al.
(2017) | \leftrightarrow | - | - | +0.6
(-0.8, 2.1) | - | - | \leftrightarrow | - | - | -2.1
(-7.8, 3.6) | - | | | ESWT + Eccentric exercise (2) | <u>Thijs et al.</u> (2017) | \leftrightarrow | \leftrightarrow | - | -0.3
(-1.6, 1) | +0.3 (-0.6,
1.2) | - | \leftrightarrow | \leftrightarrow | - | -1.5
(-8.3, 4.3) | -2.9
(-9.1, 3.3) | | | Overall f-ESWT + Eccer
vs sham ESWT + Eccen
(Certainty of Evidence) | tric exercise (2) | ↔
(mode
rate)^ | - | - | +0.1
(-0.8, 1)
(moderate)^ | - | - | ↔
(mod
erate) | - | - | -1.8 (-8, 4.4)
(moderate)^
^ | - | | | Isometric (1) vs
Isotonic (2) exercise – | <u>Holden et al.</u>
(2020) | ↔* | - | - | +0.3
(1.3, -0.7) | - | - | - | - | - | - | - | | | immediate post-
intervention | Rio et al.
(2015) | ↓* | - | - | -4.3
(-7.4, -1.2) | - | - | - | - | - | - | - | | | outcomes | Rio et al.
(2017) | ↓ * | - | - | -0.9
(-1.1, -0.7) | - | - | \leftrightarrow | - | - | N/A | - | | | Overall Isometric (1) versions of the comment th | oost- | ↔
(low)^ | - | - | -1
(-2.6, 0.5)
(low)^^^ | - | - | - | - | - | - | - | | | Isometric exercise (1) vs sham TENS (2) – | Pietrosimone
et al. (2020) | \leftrightarrow | - | - | -0.1 [-1.1,
0.9] | - | - | - | - | - | - | - | | | immediate post- | | | | | | | | | | | | | | |--|----------------|-------------------|-------------------|-------------------|---------------------|-----------------------|----------------------|-------------------|-------------------|-------------------|---------------------|---------------------|---------------------| | intervention | | | | | | | | | | | | | | | <u>outcomes</u> | | | | | | | | | | | | | | | Isometric (1) vs | Van Ark et al. | | | | -0.5 | | | | | | -1 | | | | Isotonic (2) exercise – | (2016) | \leftrightarrow | - | - | (-2.6, 1.6) | - | - | \leftrightarrow | - | - | (-11.1, 9.1) | - | - | | 4-week outcomes | | | | | , , | | | | | | , , | | | | Moderate, slow | Agergaard et | | | | | | | | | | | | | | resistance (1) vs | al. (2021) | \leftrightarrow | _ | \leftrightarrow | -0.6 (-1.3, | _ | -0.5 (-1, | \leftrightarrow | _ | \leftrightarrow | +0.9 (-12.8, | _ | +1.8 (- | | heavy, slow | | | | | 0.1) | | 0) | | | | 14.6) | | 11.8, 15.4) | | resistance (2) exercise | | | | | | | | | | | | | | | Eccentric exercise | Young et al. | | | | | | +0.2 | | | | | | | | decline squat (1) vs | (2005) | ↑ | _ | \leftrightarrow | +1.4
(-1.3, 3.5) | _ | (-0.7, | \leftrightarrow | - | \uparrow | +7
(-1.6, 15.6) | - | +9
(0.4, 17.6) | | standard/step squat | | | | | (-1.3, 3.5) | | 1.1) | | | | (-1.6, 15.6) | | (0.4, 17.6) | | (2) | D | | | | | | | | | | | | | | Progressive tendon- | Breda et al. | | | | | | | | 1 | | +1.4 (-5.5, | +8.7 (1.2, | | | loading exercise (1) vs | (2021) | - | - | - | - | - | - | \leftrightarrow | l | - | 8.3) | 16.2) | - | | eccentric exercise (2) Eccentric exercise (1) | Bahr et al. | | | | | | +0.8 | | | | _ | _ | | | vs Surgery (2) | (2006) | - | - | \leftrightarrow | - | - | (-0.1, | \leftrightarrow | \leftrightarrow | - | +9
(0.9, 17.1) | 0
(-8.6, 8.6) | - | | | , , | | | | | | 1.7) | | | | (0.0, 17.1) | (0.0, 0.0) | | | LR-PRP injection + | Scott et al. | | | ↔* | +1.1 (-0.7, | +0.8 (-0.9, | +2.6 | | ↔* | ↔* | -6 (-20.9, | -17 (-32.3, - | -22 (-38.7, | | exercise (1) vs Saline injection + exercise (2 | (2019) | \leftrightarrow | \leftrightarrow | ↔ " | 2.9) | 2.5) | (0.8, 4.4) | \leftrightarrow | ↔ " | ↔" | 8.9) | 1.7) | -5.3) | | LP-PRP injection + | Scott et al. | | | | | | | | | | | | | | exercise (1) vs Saline | (2019) | | | | | 10/07 | 0.5 / | | | | 0 / 10 0 | 4 / 4 4 0 | 5 / 00 0 | | injection + exercise | (2019) | \leftrightarrow | ↔* | \leftrightarrow | -1.1 (-3, 0.8) | -1.9 (-3.7, -
1.1) | -0.5 (-
2.3, 1.3) | \leftrightarrow | \leftrightarrow | \leftrightarrow | +2 (-13.8,
17.8) | +1 (-14.3,
16.3) | -5 (-20.8,
10.8) | | (2) | | | | | | | | | | | | | | | LR-PRP injection + | Scott et al. | | | | | | | | | | | | | | exercise (1) vs LP-PRP | (2019) | | | | | +2.7 (1, | +3.1 | | | | -8 (-24.7, 8.7 | -17 (-33.7, - | -17 (-35.4, | | injection + exercise | (2013) | ↔* | ↔* | ↔* | +2.2 (0.4, 4) | 4.4) | (1.2, 5) | \leftrightarrow | ↔* | ↔* | -0 (-24.7, 0.7 | 0.3) | 1.4) | | (2) | | | | | | , | , , , | | | | , | , | , | | (4) | | | | | | | | | | | | | | | BM-MSC + exercise vs
LP-PRP injection +
exercise (2) | Rodas et al.
(2021) | - | \leftrightarrow | - | - | +1.3 (-0.7,
3.3) | - | - | \leftrightarrow | - | - | -2.2 (-23.9,
19.5) | - | |--|-----------------------------|-------------------|-------------------|---|---------------------|---------------------|---|-------------------|-------------------|---|-------------------------|-----------------------|---| | Patellar strap (1) vs
Sports taping (2) | De Vries et al.
(2016) | \leftrightarrow | - | - | +0.2
(-0.8, 1.2) | - | - | - | - | - | - | - | - | | Patellar strap (1) vs
no treatment (2) | De Vries et al.
(2016) | \leftrightarrow | - | - | -0.3
(-1.3, 0.7) | - | - | - | - | - | - | - | - | | Sports taping (1) vs no treatment (2) | De Vries et al.
(2016) | \leftrightarrow | - | - | -0.5
(-1.5, 0.5) | - | - | - | - | - | - | - | - | | Electrophysiotherapy + eccentric exercise (1) vs USGT + eccentric exercise (2) | Abat et al.
(2016) | - | - | - | - | - | - | \ | - | - | -12.5 (-21.4,
-3.6) | - | - | | Dry Needling + Eccentric exercise (1) vs PRP + Eccentric exercise (2) | <u>Dragoo et al.</u> (2014) | \leftrightarrow | \leftrightarrow | - | +1.5 (0, 3) | +1.1 (-0.1,
2.3) | - | \ | \leftrightarrow | - | -20.2
(-31.3, -10.1) | +3.3 (-8.2,
14.4) | - | | Dry Needling + Eccentric exercise (1) vs PNE + Eccentric exercise (2) | Lopez-Royo et al. (2021) | \leftrightarrow | \leftrightarrow | - | +0.4 (-0.6,
1.4) | -0.4 (-1.3,
0.5) | - | \leftrightarrow | \leftrightarrow | - | -0.1 (-6.7,
6.5) | -3.4 (-12.5,
5.7) | - | | Dry Needling + Eccentric exercise (1) vs Eccentric exercise (2) | Lopez-Royo et al. (2021) | \leftrightarrow | \leftrightarrow | - | +0.7 (-0.4,
1.8) | -0.5 (-1.5,
0.5) | - | \leftrightarrow | \leftrightarrow | - | -4.3 (-12,
3.4) | -3.2 (-11.4,
5) | - | | PNE + Eccentric exercise (1) vs Eccentric exercise (2) | Lopez-Royo et al. (2021) | \leftrightarrow | \leftrightarrow | - | +0.3 (-0.7,
1.3) | -0.1 (-1.2,
1) | - | \leftrightarrow | \leftrightarrow | - | -3.6 (-11.3,
4.1) | +0.8 (-7.3,
8.9) | - | | PRP injection + eccentric exercise (1) | Kaux et al.
(2019) | \leftrightarrow | - | - | -0.9 (-1.9,
0.1) | - | - | \leftrightarrow | - | - | -8 (-17.8,
1.8) | - | - | | vs HA injections + eccentric exercise (2) | | | | | | | | | | | | | | |---|--------------------------------|-------------------|-------------------|----|----------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|---------------------|-----------------------|-------------------| | Polidocanol injections (1) vs placebo injections (2) | Hoksrud et al.
(2006) | - | - | - | - | - | - | - | 1 | - | - | +10 (0.1,
19.9) | - | | Injection of collagen-
producing cells +
eccentric exercise
vs Injection of
autologous plasma +
eccentric exercise | <u>Clarke et al.</u>
(2011) | - | - | - | - | - | - | ↑ | 1 | - | +11 (5.1,
16.9) | +8.1 (2.4,
13.7) | - | | Eccentric exercise (1) vs Eccentric device (overload) (2) | Frohm et al
(2007) | \leftrightarrow | - | - | 0
(-0.6, 0.6) | - | - | \leftrightarrow | - | - | -2 (-15.6,
11.4) | - | - | | Single PRP injection + Eccentric exercise (1) vs two PRP injections + Eccentric exercise (2) | Kaux et al.
(2016) | ↔* | - | ↔* | -2 (1.2, 2.8) | - | -3.4
(-4.1, -
2.7) | \leftrightarrow | - | \leftrightarrow | +11 (2.3,
19.7) | - | -1
(-9.1, 7.1) | | Corticosteroid injection (1) vs Eccentric exercise (2) | Kongsgaard et al. (2009) | _** | \leftrightarrow | - | -1.2
(0, 2.4) | 0
(-1.2, 1.2) | - | _** | \ | - | -4
(-10.9, 2.9) | -23
(-32.4, -13.8) | - | | Corticosteroid injection (1) vs Heavy Slow Resistance exercise (2) | Kongsgaard et al. (2009) | _** | 1 | - | +0.2 | +2.1 | - | _** | \ | - | -4
(-13.1, 5.1) | -30
(-38.9, -21.1) | - | | Heavy Slow Resistance (1) vs Eccentric (2) exercise | Kongsgaard et al. (2009) | _** | \leftrightarrow | - | -1.4
(-2.5, -0.3) | -1.1
(-2.2, 0) | - | _** | \leftrightarrow | - | 0
(-6.5, 6.5) | -7
(-14.6, 0.4) | - | | Autologous blood + eccentric (1) vs Saline + eccentric (2) | Resteghini et al. (2016) | \leftrightarrow | - | \leftrightarrow | +0.3 (-1.9,
2.5) | - | +0.6 (-
1.6, 2.8) | \leftrightarrow | - | \leftrightarrow | +4.2 (-10,
18.4) | - | -0.6 (-
14.8, 13.6) | |---|---|-------------------|-------------------|-------------------|----------------------|-----------------|----------------------|-------------------|-------------------|-------------------|----------------------|---------------------|------------------------| | Wired (1) vs Wireless (2) iontophoresis | Rigby et al. (2015) | \leftrightarrow | - | - | -0.5 (-2.1,
1.1) | - | - | - | - | - | - | - | - | | Wired (1) vs Sham (2) iontophoresis | Rigby et al. (2015) | \leftrightarrow | - | - | -1.1 (-3.1,
1.1) | - | - | - | - | - | - | - | - | | Wireless (1) vs Sham (2) iontophoresis | Rigby et al.
(2015) | \leftrightarrow | - | - | -1.6 (-3.4,
0.2) | - | - | - | - | - | - | - | - | | Eccentric exercise + stretching (1) vs pulsed US (2) | Stasinopoulos
&
Stasinopoulos
(2004) | \ | - | - | - | - | - | - | - | - | - | - | - | | Eccentric exercise + stretching (1) vs transverse friction (2) | Stasinopoulos
&
Stasinopoulos
(2004) | \ | - | - | - | - | - | - | - | - | - | - | - | | Pulsed US (1) vs
transverse friction (2) | Stasinopoulos
&
Stasinopoulos
(2004) | \leftrightarrow | - | - | - | - | - | - | - | - | - | - | - | | Topical GTN + Eccentric exercise (1) vs Placebo + Eccentric exercise (2) | Steunebrink
et al. (2013) | - | \leftrightarrow | - | -1.7
(-3.1, -0.3) | -0.5
(-2, 1) | - | - | \leftrightarrow | - | +4.1
(-3.7, 11.9) | -0.9
(-8.9, 7.1) | - | | f-ESWT + Eccentric
exercise (1) vs r-ESWT
+ Eccentric exercise
(2) | Van der Worp
et al. (2014) | \leftrightarrow | - | - | +0.1
(-1, 1.2) | - | - | \leftrightarrow | - | - | +6.3
(-1.6, 14.2) | - | - | | <u>LR-PRP (1) vs ESWT</u> (2) | <u>Vetrano et al.</u>
(2013) | \leftrightarrow | + | + | -1
(-1.8, -0.2) | -1.8
(-2.6, -1) | -2
(-2.8, -
1.2) | \leftrightarrow | 1 | 1 | +5.7
(-1.2, 12.6) | +13.8
(-7.2, 20) | +14.5
(8, 21) | |---|---------------------------------|-------------------|-------------------|----------|---------------------|---------------------|------------------------|-------------------|-------------------|----------|----------------------|---------------------|--------------------------| | Eccentric exercise (1) vs Standard training (2) | Visnes et al
(2005) | - | - | - | - | - | - | \leftrightarrow | - | - | -1
(-9.2, 7.2) | - | - | | ESWT (1) vs
"Conservative
treatments" (2) | Wang et al.
(2007) | - | - | \ | - | - | -4.7 (-
5.7, -3.7) | - | - | ↑ | - | - | +47.7
(39.8,
55.6) | | US + Eccentric exercise (1) vs Sham US + Eccentric Exercise (2) | <u>Warden et al.</u>
(2008) | \leftrightarrow | - | - | +0.3
(-0.8, 1.4) | - | - | \leftrightarrow | - | - | -1.1
(-8.7, 6.5) | - | - | | Sclerosing polidocanol injections (1) vs Arthroscopic surgery (2) | Willberg et al.
(2011) | - | - | 1 | - | - | - | - | - | - | - | - | - | | f-ESWT (1) vs Sham | Zwerver et al.
(2011) | \leftrightarrow | \leftrightarrow | - | -0.2
(-1.2, 0.8) | -0.4
(-1.4, 0.6) | - | \leftrightarrow | \leftrightarrow | - | +0.8
(-4.7, 6.3) | +0.8
(-4.7, 6.3) | - | | <u>ESWT (2)</u> | Taunton et al.
(2003) | - | - | - | - | - | - | 1 | - | - | +3.7 (CI n/a) | - | - | Suppl. Table 3. Results of compared interventions from included studies shown a) qualitatively based on the direction of effect ["Pain (VAS 0-10)" and "Function (VISA-P 0-100)"] and b) quantitatively ["MD VAS (95% CI)" and "MD VISA-P (95% CI)"]. Where mean differences (MD) are reported, for pain VAS the minus (-) sign favours intervention "1" and the plus (+) sign intervention "2"; for VISA-P, the plus (+) sign favours intervention "1" and the minus (-) sign intervention "2". Where the direction of effect is reported, for pain VAS, the "down" arrow (\downarrow) favours intervention "1" at statistical significance, the "up" arrow (\uparrow) intervention "2" and the "equal" arrow (\leftrightarrow) shows no statistical difference for the compared interventions; for VISA-P, the "up" arrow (\uparrow) favours intervention "1" and the "down" (\downarrow) arrow intervention "2". Underlined comparisons and studies are those of low risk of bias. BM-MSC, bone marrow mesenchymal stem cells; ESWT, extracorporeal shockwave therapy; f-ESWT, focal ESWT; GTN, glyceryl trinitrate; m, months; LP-PRP, leucocyte-poor PRP; LR-PRP, leucocyte-rich PRP; NRS, numerical rating scale; NSAIDs, non-steroidal anti-inflammatory drugs; PNE, percutaneous needle electrolysis; PRP, platelet-rich plasma; r-ESWT, radial ESWT; TENS, transcutaneous electric nerve stimulation; US, ultrasound; USGT, ultrasound-guided galvanic therapy; VAS, visual analogue scale; VISA-P, Victorian Institute of Sports Assessment – Patellar; w, weeks; y, years - ^Meta-analysis abandoned due to substantial heterogeneity (I²=83%) - ^^ Strength of evidence downgraded for high overall risk of bias - ^^^ Strength of evidence downgraded for high overall risk of bias and indirectness of evidence - *Differences appear significant both clinically and statistically. However, the authors state that there were no statistically significant differences - **No inter-group statistical tests at 12 weeks N/A, not available Figure 1. PRISMA 2009 Flow Diagram From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097 Suppl. Figure 1. PRISMA flowchart showing the article selection process Suppl. Figure 2a&b. Network forest plots for all included interventions in the network meta-analysis for short-term pain VAS (2a) and VISA-P (2b). A, eccentric exercise – decline squat; B, concentric exercise; C, focal extracorporeal shock-wave therapy + eccentric exercise; D, eccentric exercise - step squat; E, dry needling + eccentric exercise; F, platelet-rich plasma injection + eccentric exercise; G, percutaneous needle electrolysis + eccentric exercise; H, eccentric device; I, two platelet-rich plasma injections + eccentric exercise; J, corticosteroid injection; K, heavy slow resistance exercise; L, autologous blood injection + eccentric exercise; M, topical glyceryl trinitrate + eccentric exercise; N, radial extracorporeal shock-wave therapy + eccentric exercise; O, ultrasound therapy + eccentric exercise; P, hyaluronic acid injection + eccentric exercise; Q, moderate slow resistance exercise; R, progressive tendon loading; S, surgery; T, collagen-producing cells + eccentric exercise; U, no treatment. ## Suppl. Figure 3a&b. Network rank line showing probabilities of each intervention ranking at each position for their effectiveness for short-term pain VAS (3a) and VISA-P (3b). A, eccentric exercise – decline squat; B, concentric exercise; C, focal extracorporeal shock-wave therapy + eccentric exercise; D, eccentric exercise - step squat; E, dry needling + eccentric exercise; F, platelet-rich plasma injection + eccentric exercise; G, percutaneous needle electrolysis + eccentric exercise; H, eccentric device; I, two platelet-rich plasma injections + eccentric exercise; J, corticosteroid injection; K, heavy slow resistance exercise; L, autologous blood injection + eccentric exercise; M, topical glyceryl trinitrate + eccentric exercise; N, radial extracorporeal shock-wave therapy + eccentric exercise; O, ultrasound therapy + eccentric exercise; P, hyaluronic acid injection + eccentric exercise; Q, moderate slow resistance exercise; R, progressive tendon loading; S, surgery; T, collagen-producing cells + eccentric exercise; U, no treatment.