Abstracts

122 ISAKOS SUBCLASSIFICATION OF ROCKWOOD TYPE III AC JOINT DISLOCATIONS IN A STABLE AND AN UNSTABLE TYPE IS NOT CLINICALLY RELEVANT

1Kristine Haugaard*, 2Klaus Bak, 3Dorte Ryberg, 4Omur Muhammedov, 1Per Højnich, 1Kristoffer Weisskirchner Barfod. 1Sports Orthopedic Research Center – Copenhagen (SORC – C), Department of Orthopedic Surgery, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, Denmark; 2Aedas Private Hospital, Øster Allé 42, Denmark; 3Physical Medicine and Rehabilitation Research – Copenhagen (PMR – C), Department of Physical and Occupational Therapy, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, Denmark; 4Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, Denmark

Background ISAKOS upper extremity committee has suggested a subclassification of Rockwood type III acromioclavicular (AC) joint dislocations in a stable type A recommended non-surgical treatment and an unstable type B recommended surgical treatment. The objective of this prospective cohort study was to investigate if this subclassification is clinically relevant.

Methods Inclusion criteria were patients aged 18–60 with acute AC joint dislocation and >50% superior displacement of the clavicle. Patients were treated non-surgically with 3m of home-based training and the option of delayed surgical intervention. Assessment was at baseline and 6w, 3m, 6m and 1y after the injury. At 6w, patients were classified as stable if they presented with no scapular dyskinesis (SD) and no overriding of the clavicle to the acromion on radiographs, and unstable if they presented with any of the two. The primary outcome was the Western Ontario Shoulder Instability Index (WOSI).

Results Eighty-eight patients contributed data for the subclassification at 6w; 20 patients were classified as stable and 68 as unstable. There was a statistically significant but not clinically relevant difference in WOSI between the two groups at 6m (p=0.03), but not at 3m and 1y. No patients from the stable group had surgery. From the unstable group, 9/68 (13%) had surgery. Patients presenting with SD had worse WOSI at all time-points compared to those without SD.

Conclusion The ISAKOS subclassification of Rockwood type III in a stable type A and an unstable type B is not clinically applicable. The presence of SD was associated with a worse result.

128 DIFFERENT STROKES FOR DIFFERENT RISK FACTORS – TASK SPECIFICITY IN THE CONTEXT OF ACL INJURY RISK

Kristín Briem*, Mohammadhossein Ghasemi, Haraldur Sigurðsson. University Of Iceland, Hringbraut 31, Iceland

Introduction The dynamic knee valgus and the stiff landing are movement patterns associated with the anterior cruciate ligament (ACL) injury mechanism. Drop jumps (DJ) and cutting maneuvers (CM) are used to assess the risk of ACL injuries, but it is not known if such standardized athletic tasks are suitable to represent and assess these movement patterns. The aim of this study was to compare the DJ and CM impact phase (within 70 ms) knee abduction moment (KAM) and the initial contact knee flexion angle (KFA).

Materials and Methods 100 athletes performed 10 repetitions of each movement before adolescence (aged 9–12) and again during adolescence, 5 years later. Kinematic and kinetic data were obtained using marker-based motion capture with force plates. Mixed models were used to assess the difference in the KAM and KFA during DJ and CM and adjusted for sex, leg, and age.

Results The DJ was associated with a lower KAM compared to the CM (0.23 Nm/kg vs 0.31 Nm/kg, p < 0.001). The DJ was associated with a lower KFA compared to the CM (28° vs 40°, p < 0.001).

Conclusion The CM is superior to demonstrate movement patterns that produce a higher KAM, but the drop-jump is superior to demonstrate propensity to land with a smaller KFA. Each task demonstrates separate movement patterns and should not be used inter-changeably. Researchers should diversify movement tasks and design them to induce kinematics and kinetics reflecting a specific movement pattern.