symptom state (PASS) threshold were compared with one-way analysis of covariance (adjusted for sex, age, time to surgery, and cartilage/meniscus injury at ACLR) or chi-square tests (α=0.05).

Results Eighty-three (83%) and 1477 (53%) patients attended the 10-year follow-up. Patients who received progressive preoperative and postoperative rehabilitation had superior outcomes for KOOS pain, symptoms, activities of daily living, sports and recreation compared with usual care (p < .001), with the largest difference in sports and recreation (13±6 points). A greater proportion also exceeded the PASS-threshold compared to patients who received usual care (53–97% versus 38–83%, p<.003).

Conclusion Ten years after ACLR, patients who received progressive preoperative and postoperative rehabilitation had better knee function and symptoms, and a greater proportion achieved acceptable symptoms compared to patients who underwent usual care.

111 USING BIOMECHANICS TO ASSESS THE COUNTERMOVEMENT JUMP AS A TOOL TO MEASURE MALE AND FEMALE ADOLESCENTS WITH ACL INJURY

1Joana Hornestam, 2Blake Miller, 3Sasha Canser, 2Daniel Benoit, 1University of Ottawa, Faculty of Health Sciences, Canada; 2Lunds Universitet, Faculty of Medicine, Sweden

10.1136/bmjsem-2023-sportskongres2023.39

Introduction Adolescent anterior cruciate ligament (ACL) injuries have increased substantially over the last two decades and some 25% will experience a re-injury following surgery, with injury rates highest among females. As such, improved return to activity metrics are imperative. Vertical jump performance is a commonly used tool, however performance standards and the role of the injured or non-injured limb in achieving jump height is unknown for adolescent males and females. As such, the purpose of this study was to (1) assess performance in ACL injured and uninjured adolescents, and (2) assess limb contributions to this performance.

Materials and Methods Thirty-one ACL injured and thirty-eight control female adolescents, and fifteen ACL injured and twenty-five control male adolescents performed a counter-movement jump (CMJ) task while whole body 3D kinematics were recorded. Maximum jump height and the maximum sagittal hip, knee, and ankle velocities were calculated. Females and males were analysed separately, while contrasts were made between limbs and injury status.

Results Jump height was 13% lower in the ACLi compared to CON, while the ACLi contralateral limb also produced greater hip, knee and ankle angular velocities compared to their injured limb in females. No difference was found in jump height between ACLi and CON, however the contralateral limb of the ACLi males had higher hip and knee extension angular velocities. Neither male nor female controls had inter-limb differences.

Conclusion ACLi adolescents shielded the injured limb to achieve similar jump performance. This leads to asymmetrical joint loading and may explain injury risk.