Applied sports science and sports medicine in women's rugby: systematic scoping review and Delphi study to establish future research priorities

Omar Heyward,‡1,2,3 Stacey Emmonds,†1,4 Gregory Roe,‡1,5 Sean Scantlebury,†1,4 Keith Stokes,‡4,6 Ben Jones‡1,3,4,7,8

ABSTRACT
Objectives In part 1, the objective was to undertake a systematic scoping review of applied sports science and sports medicine in women’s rugby, and in part 2 to develop a consensus statement on future research priorities.

Design In part 1, a systematic search of PubMed (MEDLINE), Scopus and SPORTDiscus (EBSCOhost) was undertaken from the earliest records to January 2021. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020, the PRISMA extension for Scoping Reviews, and the PRISMA extension protocols were followed. In part 2, 31 international experts in women’s rugby (ie, elite players, sports scientists, medical clinicians, sports administrators) participated in a three-round Delphi consensus method. These experts reviewed the findings from part 1 and subsequently provided a list of priority research topics in women’s rugby. Research topics were grouped into expert-based themes and expert-based subthemes via content analysis. Expert-based themes and expert-based subthemes were ranked from very low to very high research priority on a 1–5 Likert scale. Consensus was defined by ≥70% agreement. The median research priority agreement and IOR were calculated for each expert-based theme and subtheme.

Data sources PubMed (MEDLINE), Scopus and SPORTDiscus (EBSCOhost).

Eligibility criteria for selecting studies Studies were eligible for inclusion if they investigated applied sports science or sports medicine in women’s rugby.

Results In part 1, the systematic scoping review identified 123 studies, which were categorised into six sports science and sports medicine evidence-based themes: injury (n=48), physical performance (n=32), match characteristics (n=26), fatigue and recovery (n=6), nutrition (n=6), and psychology (n=5). In part 2, the Delphi method resulted in three expert-based themes achieving consensus on future research priority in women’s rugby: injury (5.0 (1.0)), female health (4.0 (1.0)) and physical performance (4.0 (1.0)).

Summary/Conclusion This two-part systematic scoping review and Delphi consensus is the first study to summarise the applied sports science and sports medicine evidence base in women’s rugby and establish future research priorities. The summary tables from part 1 provide valuable reference information for researchers and practitioners. The three expert-based themes that achieved consensus in part 2 (injury, female health and physical performance) provide clear direction and guidance on future research priorities in women’s rugby. The findings of this two-part study facilitate efficient and coordinated use of scientific resources towards high-priority research themes relevant to a wide range of stakeholders in women’s rugby.

Key messages
What is already known
⇒ Women’s rugby has grown substantially in global popularity and professionalisation. As women’s rugby continues to grow and develop, it is important to systematically identify and map the volume and nature of research on applied sports science and sports medicine to establish the current evidence base in the scientific literature and future research priorities.

What are the new findings
⇒ The scoping review part of this study identified 123 studies investigating applied sports science and sports medicine in women’s rugby. Studies were categorised into six evidence-based themes, with the most researched evidence-based themes identified being injury, physical performance and match characteristics. The summary tables of the applied sports science and sports medicine evidence base provide valuable reference information.

⇒ Based on the current evidence base, experts established consensus on three expert-based themes for future research priority: injury, female health and physical performance. The findings of this study guide future research priorities in women’s rugby and have relevance to a wide range of stakeholders (eg, practitioners, coaches, players, researchers and governing bodies).
INTRODUCTION

Rugby union, rugby league and rugby sevens are all codes of rugby (rugby codes collectively referred to as ‘rugby’ hereafter). Men and women play rugby at junior, senior, amateur and elite levels. At the elite level, each team in rugby union, rugby league and rugby sevens matches consists of 15, 13 and 7 players, respectively, on the pitch, with 8, 4 and 5 players, respectively, on the bench as interchanges or substitutions. There are rule variations at lower performance levels (eg, in rugby union, the Rugby Football Union (RFU) has stipulated not more than five replacements and substitutions at levels 3 and 4, and not more than three replacements and substitutions at levels 5 and below). Players are broadly categorised into the positional playing groups of forwards or backs. Specialist positions within the broad positional categories exist for each rugby code. Match duration can vary by country. For example, women’s rugby union and rugby league in England are played over two 40 min halves. In the Australian women’s rugby league domestic competition, each half is 30 min in length, less than the Australian women’s rugby union competition and the domestic women’s rugby league competition in England, which is 40 min per half. Although rugby sevens is played under essentially the same rules as rugby union, it is played over 7 min halves. Rugby sevens is typically played in a tournament-style format, with five to six games played over 2–3 days. Another key difference between the rugby codes is that when the ball leaves the field of play, rugby union and rugby sevens restart with a line-out, whereas rugby league restarts with a scrum. Additionally, following a tackle, in rugby union and rugby sevens, players can contest the ball via ruck or maul, whereas rugby league requires a play-the-ball. In rugby union, a ruck involves one or more players from each team, close around the ball, which is on the ground, while a Maul consists of a ball carrier and at least one player from each team, bound together and on their feet. In rugby league, a play-the-ball is the act of bringing the ball into play after a tackle.

Women’s rugby has grown substantially in global popularity and professionalisation. In the 2016 Rio Olympics, men’s and women’s rugby sevens were introduced, which helped increase the spotlight on women’s game. Internationally, women’s rugby union participation increased by 28% from 2017 to 2019, resulting in 2.7 million registered players. Major investment into women’s rugby in England was seen in 2017 with the introduction of top-tier competitions (RFU: Premier 15s; Rugby Football League: Women’s Super League), supporting the growth and profile of women’s rugby. In 2019, the England senior women’s rugby union squad became the world’s first professional women’s rugby union team when the RFU awarded 28 full-time playing contracts ahead of the women’s Six Nations Championship. This is in contrast to men’s rugby union, which went professional in 1995.

Alongside the global growth in women’s rugby, recent systematic reviews of the emerging evidence base in women’s rugby have been provided on injury, match demands and physical characteristics for specific rugby codes. These reviews are limited to a single rugby code or research theme. Similarities exist between rugby codes (ie, physiologically demanding intermittent contact sports that involve high-intensity actions (eg, tackling, sprinting) interspersed with low-intensity actions (eg, walking)) in comparison with non-contact sports. Therefore, it is important to collate the evidence base within women’s rugby to facilitate cross-code knowledge transfer and collaboration. Identifying and mapping the current research literature within women’s rugby and then highlighting evidence gaps are important to ensure the current evidence base is applied in policy and practice, and the evidence base continues to evolve systematically in areas where limited research exists. A systematic scoping review, by definition, is well suited to achieving these objectives. Systematic scoping reviews aim to examine the extent, range and nature of the evidence, summarise findings from a body of knowledge, and identify gaps in the literature to aid planning of future research.

Once the evidence base is known, it is important to establish research priorities. Developing research priorities facilitates efficient and coordinated use of scientific resources towards meaningful topics and outcomes. Research priorities should be co-constructed by various stakeholders (including the athlete) in women’s rugby to ensure the research has translational impact and benefit. Previous literature has not included the athlete in the construction of collaborative sports science research. Inclusion of the athletes’ views in developing research priorities advances not only previous work but also ensures relevant player-focused research questions, development of player-friendly information and the translational impact of the research. The Delphi technique is well suited to achieving these outcomes as it is a method used to achieve consensus or determine priorities. The technique is highly structured and generally uses a panel to rate a series of statements on a defined Likert scale. A key strength of this method is that it allows balanced stakeholder participation, which minimises the risk of bias, thus enhancing scientific rigour. Therefore, the aims of this study were as follows: in part 1, to undertake a systematic scoping review of applied sports science and sports medicine in women’s rugby; and in part 2, to develop a consensus statement on future research priorities.

METHODS

Design

This research follows a two-part study design. Although this study was not registered, the protocol has been previously published.

Part 1: systematic scoping review of women’s rugby

A systematic scoping review of applied sports science and sports medicine in women’s rugby was performed in line with the updated guideline for reporting systematic
reviews (Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020), 25 the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews,16 and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension.26

Part 2: consensus on future research priorities in women’s rugby

A three-round Delphi consensus method was performed to identify future research priorities.23 27 28 The CREDES (Conducting and Reporting Delphi Studies) guidance was followed.29 This process involved expert stakeholders reviewing findings from part 1 and subsequently providing a list of priority research topics in women’s rugby. Research topics were grouped into expert-based themes and expert-based subthemes via content analysis.30 31 Expert-based themes and subthemes were ranked from very low to very high research priority on a 1–5 Likert scale. Consensus was defined as achieving ≥70% agreement.28 32–34 All participants provided informed consent.

Part 1: systematic scoping review of women’s rugby

Search strategy

To carry out this review, a systematic search of electronic databases (PubMed (MEDLINE), Scopus, SPORTDiscus (EBSCOhost)) was performed from the earliest records to 20 January 2021. Search terms were constructed using previously published sports science and sports medicine reviews as a guide.32 35 36 All study designs were included. The search strategy combined women (“female”, “women*”) AND rugby (“rugby”, “rugby league”, “rugby union”, “rugby sevens”), with terms covering topics related to the applied sports science and sports medicine in women’s rugby: “performance” OR “match*” OR “characteristics” OR “peak” OR “game” OR “competition” OR “skill” OR “technical” OR “anthropometric” OR “composition” OR “physical” OR “strength” OR “power” OR “jump” OR “speed” OR “fitness” OR “aerobic” OR “training” OR “qualities” OR “neuro*” OR “muscle damage” OR “fatigue” OR “recovery” OR “nutrition” OR “iron” OR “injury” OR “incidence” OR “psychology” OR “menstrual” OR “period” OR “menses”. Searches were performed in the title and abstract fields. Searches were limited to the English language. The reference lists of selected studies were manually searched for additional eligible papers.

Study selection

After removing duplicates, search results were independently screened by two researchers (OH, SS) against the eligibility criteria. Disagreements were resolved through discussion or via a third researcher (BJ) if required. The title and authors were not masked to the reviewers. Studies were eligible for inclusion if they investigated applied sports science or sports medicine in women’s rugby. Only peer-reviewed original research studies in the English language were included. Studies including both women’s and men’s rugby players were included if data were reported separately for men and women. Studies were excluded in cases where they did not investigate rugby, or they used rugby players as participants but did not investigate applied sports science and/or sports medicine in rugby players. For example, one study37 used women’s university rugby players as participants but the purpose of the investigation was to examine the relationship between the composite Functional Movement Screen and the modified Star Excursion Balance Test scores on agility performance and was therefore excluded. Such studies using women’s rugby players to examine broader concepts have minimal direct application to women’s rugby. Review articles, conference proceedings, editorials, case studies, letters to editors and theses were excluded.

Data charting

The categorisation of studies into evidence-based sports science and sports medicine themes was determined by each study’s primary aims and outcome measures. Similar methods have been used in a recent scoping review.38 When studies investigated multiple themes, they were categorised by the primary theme. Primary themes were determined by the main study aim, as stated in the study and/or by the theme of the journal where the paper was published. Evidence-based theme subcategories were identified where appropriate. Data charting was conducted by one researcher (OH) and confirmed by a second (SS) using a predesigned charting form,39 which included the general study characteristics (ie, year of publication, geographical location, cohort (rugby code, playing level), sample size) of each study, data relating to participants’ characteristics (eg, age, height, body mass), the aim, outcome measures and key findings.

Data analysis

As the purpose of a scoping review is to map the extent, range and nature of literature and summarise heterogeneous findings, data analysis was not conducted.16 All data are presented as mean±SD unless otherwise stated.

Part 2: consensus on future research priorities in women’s rugby

Delphi technique

Expert panel

A group of 52 international experts on sports science and/or sports medicine in women’s rugby were invited to participate. The invited experts included 27 women and 25 men across (n=6 elite players, n=19 sport scientists, n=17 medical clinicians, n=10 sports administrators). A minimum of 10 experts were required for reliable results.40 41 Including a greater number of experts increases the reliability.40 41 Eligibility criteria were defined as a researcher, professional or elite player with experience and/or affiliation with women’s rugby at the national level or above. Furthermore, for players to be included in the expert panel, they must have met
the following criteria: (1) currently play internationally and (2) actively involved in sports science or medicine (eg, PhD (candidate), lecturer, medical doctor). Although the criteria for players may limit the number of included participants, as per sampling guidelines, it enhances the possibility of players drawing clear interpretations from published research studies. All participants were recruited via a purposeful sampling technique, which involved selecting knowledgeable individuals with specific experience in women’s rugby. Consideration was given to having multiple national governing bodies represented across rugby codes, as well as representation by elite players and practitioners in sports science (eg, researcher, strength and conditioning coach), medicine (eg, chief medical officer, team doctor) or sports administrators (eg, director of women’s rugby, programme manager). This wide array of international experts was included to ensure multiple participant views would be captured, thus enhancing the translational impact and benefit of the research.

Round 1
In the first round of questioning, the expert panel were asked to read the results from part 1 (online supplemental tables 1–7) to inform them about the current research in women’s rugby. Via the Qualtrics online software (Qualtrics, Provo, USA), experts were then asked to provide a list of priority research topics. Research topics from the first round were grouped, by inductive content analysis, into expert-based themes and expert-based subthemes. This process has recently been used in both netball and women’s football (soccer) reviews. It involves an abstraction process whereby expert-based subthemes were given categories to develop expert-based themes. When the final list of expert-based themes and expert-based subthemes was identified, the list was refined to enhance clarity and remove duplicates and typographical errors. In each round, participants were given 1 week to respond to the questionnaire, with reminder emails sent out to non-responders 2–3 days before the deadline.

Round 2
As per the inductive content analysis process, the expert panel received the refined list of expert-based themes and subthemes developed in round 1. The expert panel were then required to (1) rate the research priority of each of the applied sports science and sports medicine expert-based themes and expert-based subthemes from low to high on a 5-point agreement Likert scale (1: very low priority; 2: low priority; 3: medium priority; 4: high priority; 5: very high priority). The expert panel were again provided with an opportunity to include any additional sports science and sports medicine expert-based themes or expert-based subthemes. Experts were given 1 week to respond to the questionnaire. When assessing consensus, Likert scale ratings were combined (ie, low: 1 and 2; medium:3; high: 4 and 5). As per previous literature, consensus was defined as achieving ≥70% agreement.

Round 3
The expert panel was asked to rerate (using the same 5-point Likert scale) the criteria from round 2 that did not reach consensus, including any new themes or subthemes that panel members included in round 2. The expert panel received feedback on round 2 in descriptive statistics (ie, mean priority rating of expert-based themes and expert-based subthemes), which enabled reflection before expressing their final opinion. Experts were given 1 week to provide their final responses to the questionnaire. As the aim of the Delphi consensus method was to ascertain the research priority of all expert-based applied sports science and sports medicine themes and subthemes, no expert-based themes or subthemes were removed on the grounds of low priority. Expert-based themes or subthemes that did not reach consensus after round 3 were not removed as they may be important to some but not all stakeholders. To manage confidentiality and experts discussing their responses during the Delphi process, the names of experts were not disclosed or shared publicly.

Research priority agreement ratings were obtained separately for each expert-based theme and expert-based subtheme. The median research priority agreement and IQR were calculated for each expert-based theme and subtheme.

RESULTS

Part 1: systematic scoping review of women’s rugby

Search and selection of studies

The database search identified 2417 articles. After removing duplicates (using Mendeley Desktop V.1.19.8) and applying the eligibility criteria, 123 studies remained for inclusion in the scoping review. The flow of articles from identification to inclusion is shown in figure 1.

General characteristics of the studies

Expert-based sports science and sports medicine themes

The 123 articles included in this systematic scoping review were categorised into six evidence-based sports science and sports medicine themes: injury (n=48, 39%), physical performance (n=32, 26%), match characteristics (n=26, 21%), fatigue and recovery (n=6, 5%), nutrition (n=6, 5%), and psychology (n=5, 4%) (figure 2).

Rugby codes

Figure 3 shows the overview of rugby codes that were included in this review: rugby union (n=42, 34%), rugby sevens (n=41, 33%), code not reported (n=24, 20%), rugby league (n=11, 9%) and multiple codes included (n=5, 4%).

Publication year

Table 1 shows the recent rapid growth in published research, with 80% of studies published between 2011 and 2021. Only evidence-based themes of injury and physical
performance include studies across all-year group classifications. All studies categorised in fatigue and recovery, match characteristics, nutrition, and psychology evidence-based themes were published between 2011 and 2021.

Geographical location of the studies
Studies were published in 16 different countries: Australia, Brazil, Canada, France, Hong Kong, Ireland, New Zealand, Norway, Romania, South Africa, Spain, Switzerland, Thailand, The Netherlands, the UK and the USA. The greatest number of studies was from the USA (n=23, 19%), followed by New Zealand (n=18, 15%), Australia (n=17, 14%), Canada (n=17, 14%) and the UK (n=17, 14%). Within the injury evidence-based theme, the greatest number of studies was from the USA (n=13, 27% of 48 studies) and then New Zealand (n=11, 23% of 48 studies). For the physical performance evidence-based theme, the greatest number of studies was from the USA (n=7, 22% of 32 studies) and then the UK (n=6, 19% of 32 studies). Most studies on match characteristics were from Australia (n=8, 31% of 26 studies), Spain and the UK (n=5, 19% of 26 studies for both countries).

Fatigue and recovery
Six studies investigated fatigue and recovery in women’s rugby (online supplemental table 1). All studies were performed in rugby sevens. Two studies (33% of 6 studies) used both state-level and national-level athletes, while the remaining four studies used either university-level, national-level or international/elite-level players. Four studies (66%) investigated the fatigue responses resulting from tournament play. One study (16%) quantified core temperature during tournament play and the efficacy of cold water immersion recovery protocols. Another study (16%) characterised sleep in team sport athletes.

Studies investigating fatigue responses reported that national-level rugby sevens players displayed smaller performance decrements between tournament days 1 and 2 when compared with state-level players and that post-tournament leucocyte count increased similarly (30%–50%) at both playing levels. Furthermore, well-being, fatigue, muscle soreness, stress levels, mood and total quality of recovery are impaired after match day 1 and do not return to baseline until 2 days post-tournament.
Creatine kinase after tournament play has been shown to increase twofold and fourfold in national-level and state-level rugby sevens players, respectively, but remain constant in university players. Henderson et al found that cold water immersion did not entirely remove body heat accumulated during warm-up and match-play in international-level rugby sevens players. Finally, national-level rugby sevens players may suffer poor sleep quality with high levels of associated daytime sleepiness.

Injury

Epidemiology

Of the 48 studies investigating injury in women’s rugby, 32 (66%) had an injury epidemiology focused theme (online supplemental table 2). These studies included participants from rugby union (n=13, 41% of 32 studies), rugby sevens (n=8, 25%), rugby league (n=3, 9%), a combination of both union and league (n=1, 3%), or the code was not reported (n=7, 22%). The cohorts used in these studies varied widely and included amateur, high school/junior/U19, provincial, collegiate, collegiate club, club, Olympic/international/world series, or a combination of levels. Nine studies (28%) reported injuries to rugby patients/claimants. The majority of the epidemiological studies (69%) collected data over longer time periods (eg, ≥1 season/year). Some studies collected data during shorter time periods (eg, ≤4 days/tournaments) and one study did not report the time course of data collection.

Multiple approaches to injury definition were taken within the included studies. Many studies (n=17, 53%) used similar definitions to a consensus statement on injury definitions in rugby union. Ten studies did not report an injury definition. Very broad (eg, ‘any physical damage’) or narrow (eg, specific body region) definitions were also used.

Studies typically reported injuries per hours of exposure or number of players. Injury incidence was reported as between 1 and 106 injuries per 1000 exposures or number of players. The site and/or type of injury were frequently reported. The lower limb and the head were the most common injury sites in comparison with other injury locations, as identified by the included studies. In women’s rugby sevens, lower limb injuries have been reported as the most prevalent injury location, at 63.2% of all injuries at the senior level and 38.1% at the U19 level. Furthermore, in rugby union, injuries to the knee were the most common, accounting for 40.3% of moderate-to-serious national insurance claims. Regarding the knee, in collegiate rugby, ACL injury incidence was reported 5.3 times higher in women compared with men. The proportion of head injuries has been reported as 33.3% in amateur rugby sevens, 23% in rugby-playing patients presenting to emergency departments, 22.1% in high school rugby union, and 12.7% in international rugby union. Collisions or tackles were typically reported as the cause of injuries. Tackling has been reported to account for ~74% and 63.6% of injuries in rugby sevens and rugby union, respectively. Injury severity in rugby sevens has been reported as 53.4 days lost in international players and 36.7 days lost in regional, collegiate and national players. When comparing elite with non-elite rugby sevens players, injury severity has been reported as 74.9 and 41.8 days lost per injury, respectively. Injury severity in amateur rugby union has been reported to be as high as 170 days lost per injury for the lower limb. Injury severity in international women’s rugby union and junior girls rugby league has been reported as 55 and 13 days lost per injury, respectively.

Risk, management and prediction

Of the 48 studies investigating injury in women’s rugby, 16 (33%) had an injury risk, management and prediction
focused theme (online supplemental table 3). These studies included participants from rugby union (n=9, 56% of 16 studies), rugby sevens (n=1, 6%), a combination of union, sevens and league (n=1, 6%), or the code was not reported (n=5, 31%). The cohorts used in these studies varied widely and included amateur/community, high school, rugby schools, club, university/college, international, or a combination of levels.

Many included studies aimed to determine the relationship between injury and potential risk factors. Some potential risk factors included physical characteristics, concussion history, wellness, demographics, foul play, and Functional Movement Screen scores. Concussion was commonly assessed within injury risk, management and prediction studies (44% of 16 studies). These studies provided Sport Concussion Assessment Tool reference values and determined whether limits should differ between sexes, evaluated standardised assessment and management of concussion, investigated the use of the King-Devick Assessment Tool for a sideline concussion assessment, investigated the neurological deficits that accompany head impacts, explored concussive history on head control, and determined the association between concussion and lower limb injury.

From a concussive symptom standpoint, more symptoms and symptom severity were reported in women's rugby union players compared with men's players. In high school rugby union, the median symptom severity was also found to be highest in women with concussion history and lowest in men with no concussion history. Women have been reported to perform better in orientation, concentration and balance assessments when compared with men. Investigations of balance across the duration of a collegiate women's rugby competitive season have shown reductions in static balance and improvements in dynamic balance at postseason testing. Significant associations between concussion and lower extremity musculoskeletal injury have been reported in women's community rugby union players (OR=2.49).

Furthermore, women's senior club-level players with concussion history have been shown to exhibit greater head accelerations and reduced trapezius and splenius capitis electromyography amplitudes. When returning to sport after a concussion in rugby, postconcussive syndrome has been shown to last longer in women than men (median number of days: 15 vs 4). A delay in women's return to sport was also found compared with men (30 days vs 21 days; p=0.19). For concussion assessment, the King-Devick test has shown good to excellent reliability for baseline (intraclass correlation coefficient (ICC): 0.84–0.89), postinjury (concussion) sideline screening (ICC: 0.82–0.97) and postseason evaluation (ICC: 0.79–0.83).

Match characteristics

Physical match characteristics

Of the 26 studies investigating match characteristics in women's rugby, 21 (81%) had a physical demands focused theme (online supplemental table 4). These studies investigated rugby sevens (n=11, 52% of 21 studies), rugby union (n=5, 24%) or rugby league (n=5, 24%). Many of these studies used an international/elite/professional cohort (n=12, 57%). Other cohorts used included provincial, collegiate, domestic premier division or a combination of levels. Sixteen of the 21 studies (76%) investigating physical characteristics within the match-play theme sampled ≤10 matches (online supplemental table 4).

The mean total distance covered during match-play was typically reported. The mean whole-match total distance covered was reported as 4982–5820 m in rugby union, 4680–6582 m in rugby league, and 1416–1642 m in rugby sevens. Maximum velocity and "high-speed" distance were also typically reported. Peak demands over various epochs (1–10 min) were quantified in two studies. The average speed demands of international women's rugby league backs and forwards peaked at 144 m/min over a 1 min epoch.

Table 1 Period of publication of studies included in the systematic scoping review

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studies (n) %</td>
<td>Studies (n) %</td>
<td>Studies (n) %</td>
<td>Studies (n) %</td>
</tr>
<tr>
<td>Fatigue and recovery</td>
<td>0 0 0 0 0 0 6 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injury</td>
<td>1 2 5 10 21 32 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Match characteristics</td>
<td>0 0 0 0 0 0 5 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition</td>
<td>0 0 0 0 0 0 6 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical performance</td>
<td>1 3 2 6 2 6 27 84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td>0 0 0 0 0 0 5 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2 2 7 6 12 10 102 83</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% represents the percentage of studies in each evidence-based theme for each period.
In international women’s rugby union, the 1 min average speed demands were 150 m/min for forwards and 157 m/min for backs. Comparisons between international and domestic locomotor characteristics during women’s rugby league match-play found that generally the demands were greater for international competition (eg, 241±146 m vs 190±156 m high-speed distance in international and domestic backs, respectively). Collisions or impacts were assessed in five studies. Two studies investigated the ability of Global Positioning Systems to detect collisions compared with video-coded analysis and found precision to be ~72%–83% in women’s rugby league and that 62% of rugby sevens collisions were incorrectly labelled. Two studies quantified head impacts over one competitive season. These studies found the mean number of head impacts per player per match to be 0.4–1.4. In domestic women’s rugby league, the median peak linear acceleration >10 g was reported as 15 g (25th–75th, IQR=12–21). One study quantified movement patterns through time-motion analysis and assessed physical demands during premier division rugby union competition and found that backs, when compared with forwards, spent more time sprinting (37±12 min vs 25±16 min) and less time in scrums, rucks, mauls and tackles (25±11 min vs 61±12 min).

Technical-tactical match characteristics

Of the 26 studies investigating match characteristics in women’s rugby, 5 (22%) had a technical-tactical focused theme (online supplemental table 5). These studies included participants from rugby sevens (n=4, 80% of 5 studies) and rugby union (20%). All these studies were performed in an international cohort.

Studies investigating the technical-tactical characteristics of international women’s rugby sevens match-play found that successful teams gained more possession from handling turnovers, used more quick line-outs, threw more passes, made more ball-jolting tackles and had a higher percentage of positive phases compared with unsuccessful teams. In international women’s rugby union, winning teams achieved a greater amount of line out possession and an increased chance of maintaining possession. Additionally, one study investigated the effects of caffeine on technical performance in international rugby sevens and found no effects on any rugby-specific actions.

Nutrition

Six studies investigated nutrition in women’s rugby (online supplemental table 7). Three of these studies were performed in rugby sevens (50% of 6 studies), one in rugby league (17%), one in rugby union (17%) and one did not report the rugby code (17%). Four studies used an elite/international cohort, one used university athletes and one used both professional and amateur players. Two studies investigated player hydration status during training and match-play, three studies investigated haematological (specifically iron and vitamin D) status, and one study investigated dietary supplementation consumption.

Investigation of hydration status in international women’s rugby league found that on arrival to training and matches, urine osmolality values were indicative of euhydration. The mean body mass reduction in university rugby union did not exceed 2% in training. This aligns with the findings of Jones and colleagues, who found ~0.5% reduction in body mass during both rugby league training and match-play. In international rugby sevens, investigation of haematological status found that 23% of women’s players were classified as iron-deficient (ferritin <30 µg/L). The greatest iron deficiency incidence occurred in mid-season (30% of players), but full recovery was evident by the end season. Suboptimal iron stores in elite women’s rugby sevens were mirrored in another study, where 29%–35% of players were identified with ferritin <15 µg/L at some stage in the study.

Women’s rugby sevens players were found to be vitamin D-deficient. Regarding dietary supplementation in a mixed cohort of professionals and amateurs, 25%–43% of women’s players were identified to consume whey protein, sports drinks, caffeine or sports bars.

Physical performance

Anthropometrics

Of the 32 studies investigating physical performance in women’s rugby, 7 (22%) had an anthropometrical focused theme (online supplemental table 6). Four of these studies included participants from rugby union (57% of 7 studies). The remaining three studies did not report the rugby code (43%). These studies included cohorts from university/college, or a combination of club and university, or elite levels.

One study investigated positional differences in anthropometric characteristics in elite rugby union women’s players and found the sum of eight skinfold thickness (128.2±36.6 mm and 94±29.0 mm) and body fat percentage (26.5%±3.1% and 20.8%±3.0%) were greater in forwards compared with backs, respectively. In division 1 collegiate rugby union, forwards displayed greater height (167.7±7.2 cm vs 164.5±5.1 cm), body mass (81.5±15.1 kg vs 64.5±7.7 kg) and body fat percentage (28.2%±6.1% vs 21.9±3.7%) relative to backs. Body mass investigations, between playing tiers, in elite women’s rugby union found forwards mass increased by 4.8% from 2010 to 2017 (79 kg to 83 kg) in tier 1 nations, with no changes in either tier 2 or backs from either tier. Mean Q-angle (21.5°), pelvic width (29 cm) and femur length (41 cm) were described in a university-level cohort. Compared with athletes of other (non-contact) sports or controls, semiprofessional women’s rugby players had greater body mass, fat-free
mass, fat mass and bone mineral density and increased thickness of abdominal musculature.133,157,139

Biomechanics

Of the 32 studies investigating physical performance in women’s rugby, 3 (9\%) had a biomechanical focused theme (online supplemental table 6). One of these studies was performed in rugby sevens with an international cohort (33\% of 3 studies).140 In comparison, the other two were performed in rugby union (67\%) with amateur141 and combined (club and international)142 cohorts. In amateur women’s rugby union, improvements in 5 m and 20 m sprint performance and mechanical properties related to the horizontal power–force–velocity profile were observed over the course of an 8-week sled training intervention.143 In international women’s rugby sevens, asymmetry of running mechanical variables was investigated, and symmetry angle remained mostly constant across all kinetic, kinematic, spring-mass characteristics and horizontal force production variables.149 Finally, machine scrummaging forces were described in club and international rugby union, and women’s peak compressive force was 8.7 kN.142

Performance

Of the 32 studies investigating physical performance in women’s rugby, 13 (41\%) had a performance testing focused theme (online supplemental table 6). Six of these studies included participants from rugby union (46\% of 13 studies),1143–147 three were from rugby sevens (23\%),148–150 two from rugby league (15\%),151 152 one used both rugby union and sevens (8\%),153 and one did not report the code (8\%).154 These studies included various cohorts including amateur,151 university/college,141 145 147 154 national,146 international143 148–150 152 or a mixed sample.1153

In women’s rugby union, studies investigating performance testing between positions found that backs were significantly quicker than forwards over 5, 10, 20, 30 and 40 m and in the 505 agility test and also demonstrated greater vertical jump height (44±5 cm vs 38±5 cm) compared with forwards.1 143 146 In both rugby union and rugby sevens,1 148 forwards were found to demonstrate greater initial sprint momentum (eg, 367±20 kg/m/s vs 399±22 kg/m/s)148 compared with backs. In university women’s players, anaerobic power was found to be greater in forwards than backs.144 In rugby union National All-Star Championship players, backs performed better on all running tests (ie, 40-yard speed, 100 m and 300 m speed, bleep test) than forwards.146 Similar findings were reported in senior and schoolgirl rugby union, where backs outperformed forwards on the aerobic shuttle test.1 Significant correlations were observed between total body fat and all fitness variables in international rugby league.192 When sex comparisons were made between female and male youth rugby league players, respectively, one repetition max squat (115±41 kg vs 104±31 kg) and bench press (46±17 kg vs 47±14 kg) were not different.151 In international rugby sevens, women demonstrated lower performances than men in all speed-power assessments and change of direction tasks (effect size=0.61–2.09), except for the zigzag drill, where no significant differences were identified between men and women.149 Additionally, women displayed a lower change of direction deficits in all tests and lower sprint momentum.149 Sprint times with different ball-carrying techniques were assessed in university-level rugby union and 10 m sprint speed was slower for women beginners who were carrying the ball versus not carrying the ball.147 This study did not find a difference in sprint speed for experienced women or men carrying or not carrying the ball. Multidirectional ability was specifically examined in two collegiate rugby union studies,144 145 which found vertical jump height correlated with 20 m speed, standing long jump distance correlated with 5 m and 10 m speed and the left-leg 505 performance (r=−0.71 to −0.88) and predicted 0–5 m and left-leg 505 time.144 No correlation was found between the change of direction deficit and sprint times.145 International rugby sevens players with high playing minutes (≥70 min) were older (24±3 years vs 21±4 years), had greater experience in a national training centre (2.4±0.8 years vs 1.7±0.9 years), had faster 1600 m time (375±20 s vs 394±30 s) and greater one repetition max strength (bench press: 68±6 kg vs 62±8 kg; pull-up: 84±8 kg vs 79±5 kg) than athletes who played fewer minutes.150

Physiology

Of the 32 studies investigating physical performance in women’s rugby, 7 (22\%) had a physiology focused theme (online supplemental table 6). Three of these studies (43\% of 7 studies) were performed in rugby sevens with an international/Olympic cohort.155–157 Of the remaining four studies, the rugby code was not reported, and the cohort was either varsity (14\%),158 subelite and elite (14\%),159 international (14\%)160 or not reported (14\%).161 Studies investigated a range of physiological-themed topics. One study investigated the relationships between blood rheology and body composition and found red blood cell aggregability negatively correlated with isometric handgrip and adductor strength (r=−0.58 to −0.50). From a women’s health perspective, 93\% of international-level athletes reported menstrual cycle-related symptoms. Furthermore, perceived heavy menstrual bleeding was reported by 33\% of players, and 67\% considered symptoms to impair physical performance.160 Urinary incontinence prevalence has been reported by 54\% of varsity players, and as many as 90\% of affected players leaked urine during match-play.158 When investigating resting metabolic rate in subelite and elite women’s players, indirect calorimetry-derived measurements have been reported at 1651±167 kcal/day.159 When comparing resting metabolic rate prediction equations with indirect calorimetry, the Cunningham, Ten Haaf and Watson (body mass) values did not differ from measured
metabolic rate (p>0.05). Two studies investigated physiological and physical variables in rugby sevens and found that the critical velocity test was correlated with the Yo-Yo Intermittent Recovery Test Level 1 test (r=0.86). Furthermore, compared with the mean speed at the second ventilatory threshold (3.5 m/s), the industry-used threshold of 5 m/s underestimated the absolute amount of high-intensity running completed by individual players by up to 30%. One final study investigated the relationship between skeletal muscle properties and peak power production capacity in Olympic rugby sevens and found a strong relationship (r=−0.75, 90% CI −0.90 to −0.44) between vastus lateralis contractile properties and power output.

Training

Of the 32 studies investigating physical performance in women’s rugby, 2 (6%) had a training focused theme (online supplemental table 6). One of these studies used an elite cohort of sevens players (50%), while the other used women’s rugby sevens, league and union strength and conditioning coaches (50%). One study evaluated countermovement jump performance over 6 weeks of progressively increasing training load and found training load to increase from week 2 to week 6. Analysis of countermovement jump variables indicated diminished neuromuscular function in elite rugby sevens players throughout the training intervention. When exploring current physical preparation practices across all rugby codes, it was found that physical testing was more commonly performed during preseason (97% of participants) and in-season (86%) phases when compared with off-season (23%). Resistance, cardiovascular, sprint and plyometric training, and recovery sessions were all believed to be important to enhancing performance and were implemented by most participants (89%). Physical preparation coaches identified the most frequent unique aspects of consideration in women’s rugby as psychosocial, menstrual cycle and physical differences.

Psychology

Five studies investigated the psychological aspect of women’s rugby (online supplemental table 7). One of these studies was performed using rugby union athletes (20% of 5 studies), one used a combination of rugby union and sevens athletes (20%) and the remaining three studies did not report the rugby code (60%). The investigated cohorts included varsity, university, international or a combination of both collegiate and national levels.

Studies investigated a range of psychologically themed topics. One study investigated early maladaptive schema elements in international players and identified an average of five per player. The most frequent were self-sacrifice (83%) and unrealistic standards/hypercriticism (78%). When investigating participant motivation in international rugby union, multifaceted motives were discovered. The four major participation motivation themes identified were (1) getting started with rugby, (2) physical aspects, (3) achievement and success, and (4) on-field and off-field player interactions. A study on rugby union and rugby sevens athletes investigated the role of mental toughness during injury and found that those who would play through injury reported higher mental toughness than those who would not. When examining avoidance behaviours during a head-on collision course, varsity rugby athletes avoided significantly later than non-athletes. One study assessed the four-stage sequence of relationships between coaches’ perceived interpersonal coaching styles and university players’ basic psychological needs, self-determined motives and performance. It was found that all basic psychological needs were perceived to be highly fulfilled.

Part 2: consensus on future research priorities in women’s rugby

Expert panel

Fifty-two international experts on women’s rugby were invited to participate. Thirty-one invited experts participated in the study, while the remaining experts did not respond to the invitation. The participating experts represented multiple nations (Australia n=4, Canada n=3, England n=10, France n=1, Ireland n=5, Scotland n=5, USA n=1, Wales n=2) across rugby codes (rugby union and/or sevens n=25, rugby league n=6) and governing bodies (experts who consented to public recognition are included in the acknowledgement section). Experts were categorised into elite player (n=4), sports science (n=11), medical clinician (n=9) or sports administrator (n=7) domains. When experts crossed multiple domains, they were classed by their primary domain expertise. The expert group consisted of 12 men and 19 women. The average number of years of experience in participants’ respective domains (ie, player, sports science, medical clinician or sports administrator) were 6.4±4.4 years (range: 2–20 years). The response rates in this Delphi consensus method, from the original 52 international experts, were 60% (n=31; round 1), 56% (n=29; round 2) and 58% (n=30; round 3). Our retention rate was 97%, which is substantially greater than the expected rate of 75%.

Consensus on future research priorities

During round 1, experts identified 183 individual meaning units. A meaning unit represents an idea, argument/reasoning chain or discussion topic in content analysis. Twenty-one meaning units were removed as they were irrelevant to applied sports science and sports medicine in women’s rugby (eg, meaning units pertaining to sociology). To form expert-based subthemes, meaning units were streamlined for clarity and concision. The abstraction process revealed 68 expert-based subthemes, which were categorised into 5 expert-based themes (female health, injury, match characteristics, physical performance and psychology). After subtheme duplicates were removed, 41 unique expert-based...
subthemes emerged. The expert-based themes that reached consensus on future research priority during round 2 included injury (median research priority=5.0 (1.0)), female health (median research priority=4.0 (1.0)) and physical performance (median research priority=4.0 (1.0)). Furthermore, two expert-based injury subthemes and one expert-based physical performance subtheme reached consensus. An additional five expert-based female health subthemes and one expert-based psychology subtheme reached consensus. During round 3, although no expert-based themes reached consensus, subthemes in female health (n=2), injury (n=3) and physical performance (n=1) did. All expert-based themes and subthemes of research priority that reached consensus are listed in table 2. Likert scale ratings were combined (ie, low: 1 and 2; medium: 3; high: 4 and 5).44

Expert-based (sub)themes that did not reach consensus

Match characteristics (median research priority=3.0 (1.0)) and psychology (median research priority=4.0 (1.0)) were the two expert-based themes that did not reach consensus. Unique expert-based subthemes that did not reach consensus (n=43) are listed in online supplemental table 8. Although consensus was not reached, these themes and subthemes may be important to some but not all stakeholders in women’s rugby.

DISCUSSION

This systematic scoping review and Delphi consensus aimed to summarise the current evidence and provide consensus on future research priorities in women’s rugby. Part 1 of this study, the systematic scoping review, identified 123 studies that were categorised within six evidence-based applied sports science and sports medicine themes (ie, fatigue and recovery, injury, match characteristics, nutrition, physical performance, and psychology). Part 2 of this study, the Delphi consensus, included an international group of expert stakeholders in women’s rugby, including elite players, sport scientists,
medical clinicians and sports administrators, to determine consensus on future research priorities. Consensus on future research priorities for injury, female health and physical performance expert-based themes was achieved. The findings of this systematic scoping review and Delphi consensus provide clear future research priorities in women’s rugby for several stakeholders, including practitioners, researchers, policy makers and governing bodies.

Experts identified the injury as a very high-priority research theme (median research priority=5.0). Five unique research subthemes were identified within this expert-based theme, with 77%–93% of experts stating these were a high priority. Concussion occurrence, risk factors, mechanisms and return-to-play management (median research priority=5.0, 93% high-priority expert agreement) and women’s response to concussion (median research priority=4.0, 90% high-priority expert agreement) were the two highest priority subthemes. This systematic scoping review supports the notion to investigate concussion further, as women’s rugby injury locations were commonly the head and lower limb, with collisions or tackles frequently reported as the cause (online supplemental table 2). Injury incidence was variable in women’s rugby and reported between injury types at 1–106 injuries per 1000 hours (online supplemental table 2). In professional men’s rugby union, match injury incidence has been reported to be 87 per 1000 hours.172

The large range in injury incidence found in this systematic scoping review may be due to various codes, cohorts, injury definitions and injury surveillance time course (eg, one season, 5 years) between the included studies (online supplemental table 2). Similar to women’s rugby, men’s rugby league and union173 found the head/face/neck, knee and lower limb to be frequent injury sites and the tackle as a common injury cause. For example, in professional men’s rugby union, tackle was responsible for 46% of ankle injuries, 45% of knee injuries and 66% of shoulder injuries.172 Furthermore, injury risk reduction strategies (eg, warm-ups, neuromuscular training and tackle technique) (median research priority=5.0, 86% high-priority expert agreement) were deemed a very high priority by experts. When considering the high research priority for injury risk reduction strategies and the tackle being responsible for a high percentage of injuries in women’s rugby (online supplemental table 2), the investigation of tackle technique and injury is justified within women’s rugby research.

Experts identified female health as a high-priority research theme (median research priority=4.0). In this expert-based theme, seven unique subthemes were identified, with 72%–90% of experts stating these were a high priority for research. The menstrual cycle, and its relationship to applied sports science and sports medicine, was found to be a common priority among experts. Menstrual cycle and injury, training load, performance, well-being and symptom management all achieved expert consensus (median research priority=4.0–5.0, 72%–90% high-priority expert agreement). Although in the evidence base there are recent meta-analyses available that investigate menstrual cycle174 and oral contraceptive174 effects on exercise performance in women, this systematic scoping review found that menstrual cycle research in rugby populations is sparse (n=1).166 Similar to the female health research priority that achieved expert consensus (table 2), a recent narrative review of health and performance in women’s football (soccer)174 highlighted menstrual cycle and performance, menstrual cycle and injury, menstrual cycle and responses to training, hormonal contraceptives, and energy availability as important considerations for women’s football. While female health has been highlighted as a high-priority expert-based theme, insufficient studies were identified in this systematic scoping review to warrant female health as an evidence-based theme. This is likely owing to the limited number of published research articles on women’s rugby at present. Despite this, relevant female health studies identified in this systematic scoping review include investigations of menstrual cycle on performance,166 breast injuries,96 urinary incontinence,136 and iron deficiency.127128 It remains clear, based on expert consensus and evidence base gaps, that further female health research is required in rugby to support both player health and performance.

Experts identified physical performance as a high-priority research theme (median research priority=4.0). In accordance with previously published scoping reviews on women’s football (soccer)178 and netball,180 the present systematic scoping review found that physical performance was a highly researched theme (n=32 of 123 studies). The two expert-identified physical performance research subthemes were strength and conditioning practices and efficacy in women’s rugby (median research priority=4.0, 77% high-priority expert agreement) and fatigue and recovery (median research priority=4.0, 76% high-priority expert agreement). This systematic scoping review highlighted that, although physical performance was the second most researched evidence-based theme, a research gap is still evident. Only two studies were identified that investigated strength and conditioning practices,162163 and all the identified fatigue and recovery studies45–50 were performed in rugby sevens. In contrast, the fatigue and recovery research in men’s rugby, for example, comprises enough studies to compile reviews on male age-grade rugby union35 and senior men’s rugby league and union.175 Given both expert consensus and the current evidence base limitations, future physical performance research could aim to improve understanding of (responses to) strength and conditioning training, and fatigue and recovery responses to various physical stimuli women’s rugby players are exposed to (eg, collisions, high-speed running).

Although the expert-based theme of psychology did not reach consensus (ie, <70% expert agreement), its subtheme of mental health (eg, stress, body dysmorphic disorders, depression, eating disorders) was deemed a high research priority (median research priority=4.0) by...
76% of experts. As per our systematic scoping review findings, the evidence base on psychology in women’s rugby is sparse (n=5). Studies investigating psychological aspects in women’s rugby were varied in their topics and included maladaptive schemas, mental toughness, avoidance behaviours, coach–athlete relationship and participant motivation. This evidence scarcity is also apparent in psychological research on male rugby in both senior and junior populations. Furthermore, although not achieving consensus, four expert-based subthemes in psychology attained a high priority from ≥57% of experts (online supplemental table 8) (ie, psychological aspects of dual-career players, psychological demands of rugby, optimising the relationship between (male) coaches and women’s rugby players, psychological barriers to rugby participation). When considering expert consensus and the current lack of psychological evidence on women’s rugby, future research could investigate mental health in women’s rugby.

This systematic scoping review revealed a further two evidence-based themes, nutrition and match characteristics, that subsequently did not achieve expert consensus as research priorities. An absence of literature on nutrition in women’s rugby is apparent (n=6). This finding is comparable with reviews on men’s rugby union, men’s rugby league, women’s football (soccer) and netball. Three expert-based subthemes on nutrition were identified (nutritional strategies to reduce concussion risk, interventions (training, nutritional) to enhance performance, and nutritional requirements and supplementation), all of which did not achieve consensus (median research priority=3.5, 4.0 and 3.0, respectively; high priority expert agreement=23%, 53% and 27%, respectively). These findings suggest that, overall, nutrition investigations are of moderate to high research priority but may be of high priority to some stakeholders. In the match characteristics evidence-based theme, a relatively high proportion of studies investigated physical match characteristics (n=21) compared with technical-tactical characteristics (n=5). This systematic scoping review found that no technical-tactical characteristics studies were performed below the international standard. Although they did not reach consensus, five expert-based subthemes on match characteristics were identified (online supplemental table 8). The highest priority match characteristics subtheme (relationship between match characteristics and injury) achieved a median priority of 4.0, and 63% of experts agreed it was a high priority. Match characteristics may not be deemed a high research priority by experts as, overall, this theme accounts for a high percentage (21% of 123 included studies) of all studies included in this systematic scoping review.

Overall, this systematic scoping review and Delphi consensus highlights key future research priorities in applied sports science and sports medicine in women’s rugby. Expert-based themes and subthemes that have achieved consensus represent high research priorities that have been agreed upon by a diverse range of international stakeholders (elite players, sports scientists, medical clinicians and sports administrators). Results from part 1 of this study highlight that some themes are under-researched (eg, female health, fatigue and recovery, nutrition, psychology). Due to the broad nature of scoping reviews and the aim of developing a consensus statement on future research priorities in mind, not all research gaps have been highlighted in this study. Additionally, combining rugby codes (ie, rugby sevens, rugby union and rugby league) may have impacted consensus as some expert-based themes (and subthemes) may be relevant to some but not all rugby codes. Furthermore, some expert-based themes (and subthemes) may be important to only specific expert groups (eg, players), which may explain why consensus was not reached (see online supplemental table 8). The (sub)themes that did not reach consensus may provide specific stakeholders with valuable information for further investigation. Finally, this systematic scoping review and Delphi consensus employed robust methodology by sampling several experts from various domains. Typically, athletes have not been included in the co-construction of sports science research. Including elite players in our expert panel not only develops upon previous research but also ensures findings are relevant to women’s rugby players. A wide range of international experts were included to ensure several opinions would be captured, thus enhancing the translational impact and benefit of the research. Although there was a wide array of international experts included, recruitment of experts may have been limited by selection bias. Due to the limited time allotment (ie, 1 week) for experts to review the findings of part 1 (online supplemental tables 1–7) to inform expert-based research priorities, some expert-based research subthemes may be already appropriately covered by existing literature. Future research on applied sports science in women’s rugby can use the data presented in this study to prioritise research topics and streamline projects to ensure the best use of scientific resources.

CONCLUSIONS

This systematic scoping review and Delphi consensus summarises the applied sports science and sports medicine in women’s rugby evidence base and provides consensus on future research priorities. Part 1 of this study, the systematic scoping review, identified 123 studies investigating applied sports science and sports medicine in women’s rugby (ie, rugby union, rugby sevens, rugby league). Most of the included studies (83%) were published in the last decade (table 1). Studies with rugby union or rugby sevens cohorts were the most common (n=83, 67%). Studies were categorised into six sports science and sports medicine evidence-based themes, namely injury, physical performance, match characteristics, fatigue and recovery, nutrition, and psychology. Summary tables of the systematic scoping review (online
supplemental tables 1–7) provide valuable reference information for researchers and practitioners. In part 2 of this study, the Delphi consensus on future research priorities in women’s rugby, international experts (elite players n=4, sport scientists n=11, medical clinicians n=9, sports administrators n=7) identified and achieved consensus on three expert-based themes, namely injury, female health and physical performance. The findings of this two-part study facilitate efficient and coordinated use of scientific resources towards high-priority themes. The findings of this systematic scoping review and Delphi consensus can be used to further develop the applied sports science and sports medicine support provided to women’s rugby players. The results of this study have relevance to a wide range of stakeholders in women’s rugby, including practitioners, players, researchers and governing bodies.

Author affiliations
1 Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
2 Rugby Football Union, Twickenham, UK
3 Leeds Rhinos Rugby League Club, Leeds, UK
4 England Performance Unit, Rugby Football League, Leeds, UK
5 Bath Rugby, Bath, UK
6 Department for Health, University of Bath, Bath, UK
7 School of Science and Technology, University of New England, Armidale, New South Wales, Australia
8 Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, the University of Cape Town and the Sports Science Institute of South Africa, Cape Town, South Africa

Twitter Omar Heyward @Omar_Heyward, Stacey Emmonds @S_Emonds, Gregory Roe @GregoryRoe, Sean Scantlebury @SeansScants, Keith Stokes @drKeithStokes and Ben Jones @23BenJones

Acknowledgements The authors would like to extend their gratitude to all members of the expert panel for their contributions. The expert panel members included the following: Allan Macdonald (Scottish Rugby), Andy Boyd (Scottish Rugby), Dr Anthea Clarke (La Trobe University), Dr Anthony Couderc (French Rugby Federation), Casimiro Morris (Rugby Academy Ireland), Professor Carolynn Emery (University of Calgary), Dr Claire McLaughlin (Irish Rugby), Associate Professor Clare Minahan (Griffith University), Dr Eanna Falvey (World Rugby), Dr Izzy Moore (Cardiff Metropolitan University), Dr Gemma Phillips (Rugby Football League), Gemma Fey (Scottish Rugby), Dr Ian Sampson (Rugby Football League), Isha Shill (University of Calgary), Kathryn Dane (Irish Rugby), Dr Katy Hornby (England Rugby), Kris Robertson (Rugby Canada), Lauren Delaney (Irish Rugby), Lesley McBride (University of Coventry), Lindsay Starling (University of Bath), Luke Woodhouse (England Rugby), Nicky Ponsford (England Rugby), Oriahh Currin (Irish Rugby), Rachel Faulk-Brown (England Rugby), Dr Rachel Malcolm (Scottish Rugby), Robert Cain (USA Rugby), Dr Sharron Fishive (Australian Rugby), Stuart Barrow (Rugby Football League), Thomas Brindle (Rugby Football League) and Dr Thomas Longworth (Australian Rugby League Commission).

Contributors OH, KS and BJ conceptualised the manuscript. OH, SE, GR and BJ identified the method and framework for the manuscript. OH and SS proposed the search strategy and screened the studies. OH prepared the manuscript. All authors contributed to subsequent drafts and approved the final version.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Consent obtained directly from patient(s).

Ethics approval This study involves human participants and was approved by the Leeds Beckett University Research Ethics Committee (#80327). Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Omar Heyward http://orcid.org/0000-0002-7390-6511
Ben Jones http://orcid.org/0000-0002-4274-6236

REFERENCES
4 England Rugby. RFU Regulation 13 - Adult Competitions (Appendix 2); 2020.
7 International Rugby League, The International laws of the game and notes on the laws; 2021.

123 Barkell JF, O’Connor D, Cotton GW. Characteristics of winning men’s and women’s sevens rugby teams throughout the knockout

Supplementary Table 1. Rugby code, participant characteristics, aims, outcome measures and key findings of studies within 'Fatigue and Recovery' evidence-based theme (n=6)

<table>
<thead>
<tr>
<th>Study</th>
<th>Rugby Code</th>
<th>*Cohort, sample size (n)</th>
<th>*Participant characteristics: age (yrs), height (cm), body mass (kg)</th>
<th>Study aims</th>
<th>Study outcome measures</th>
<th>Key findings</th>
</tr>
</thead>
</table>
| [45] | Sevens | State (n=10) and national (n=12) | State: 24 ± 4 yrs, 167 ± 3 cm, 66 ± 8 kg
National: 22 ± 3 yrs, 167 ± 4 cm, 66 ± 5 kg | To examine relationships between on-field movement patterns and changes in markers of neuromuscular fatigue and muscle damage during a 2-day tournament. | Perceptual (self-reported soreness and recovery), muscle damage (CK) and neuromuscular (CMJ) responses. GPS (SPI HPU) derived external match load: duration, distance, relative distance, and distance covered in various speed zones and total impacts in various zones. | National players had greater on-field movements for total time, distance, high-speed running, and impacts (ES = 0.55–0.97) and displayed a smaller decrement in performance from day 1 to day 2. State players had a 4-fold increase in CK compared with the 2-fold increase in national players (ES = 0.73). Both groups had similar perceived soreness and recovery while CMJ was unchanged. High-speed running and impacts >10 g were largely correlated (r = -0.66–0.91) with 6Cr for both groups. |
| [46] | Sevens | State (n=10) and national (n=12) | State: 24 ± 4 yrs, 167 ± 3 cm, 66 ± 8 kg
National: 22 ± 3 yrs, 167 ± 4 cm, 66 ± 5 kg | To quantify the short-term changes in biochemical and haematological variables of inflammation and haemolysis induced by a 2-day tournament and explore the relationship between on-field movement patterns and select biomarkers. | Biochemical and haematological variables. GPS (SPI HPU) derived external match load: playing time, TD, distance covered at high speed, total number of impacts and impacts >10 g. | National players completed greater on-field movements (ES = 0.55–0.97), post-tournament leucocyte count decreased similarly (30-50%) in both groups (ES = 1.52-1.95). Neutrophil count positively correlated (r = 0.57–0.89) with all on-field movements for both groups. Haptoglobin were 94% higher at baseline in national players (ES = 1.33) but declined ~20-40% in both groups. CK increased 4-fold in state players, and 2.5-fold in national players (ES =2.86–4.10). |
| [50] | Sevens | Elite (n=12) | 25 ± 4 yrs, 169 ± 4 cm, 64 ± 5 kg | To determine time courses of wellbeing, TQR and neuromuscular performance within and after an elite women’s rugby sevens tournament and to assess the influence of match load indicators. | Wellbeing (self-reported wellbeing and recovery), neuromuscular (CMJ). Internal (sRPE) and external (GPS derived JONAN Sports): TD and TD covered during various running intensities; video-based notational analysis derived number of physical contacts | Wellbeing, fatigue, general muscle soreness, stress levels, mood and TQR were significantly (p<0.005) impaired after match day 1 and did not return to baseline values until day plus two. Greater high-intensity running was related to more fatigue (r=-.60, p=0.049) and a larger number of physical contacts with more general muscle soreness (r=-.69; p=0.013). |
| [185] | Sevens | University (n=13) | 22 ± 2 yrs, 162 ± 5 cm, 65 ± 5 kg | Establish the release dynamics of the muscle damage markers of the enzymes CK, LDH, and AST | Salivary CK, LDH and AST | CK and LDH did not change after match play. AST increased after match 3 (13.4 vs. 21.1; p < 0.05). |
| [49] | Sevens | International (n=12) | 23 yrs, 169 cm, 68 kg | To characterize player core temperature across a World Rugby Women’s Sevens Series tournament day and determine the efficacy of commonly employed CWI protocols. | Tc, symptoms of exertional heat illness, perceptual scales, CWI details. GPS (EVO, GPSports) derived external load: playing minutes, average speed, high-speed running, average accelerations and decelerations | Average Tc was very likely lower (ES = 0.33) in game 1 than in game 2. Peak Tc was very likely (ES = 0.71) associated with increased playing time. CWI did not remove the accumulated Tc due to warm-up and match play activity (~1°C–2°C rise in Tc still present compared with Tc at warm-up onset for players 26-min match play). |
| [48] | Sevens | National (n=20) | 24 ± 3 yrs, 170 ± 6 cm, 72 ± 10 kg | To characterize sleep quality among team sport athletes; explore sleep-associated issues; compare sleep quality between groups, and early versus daytime and evening trainers; evaluate relationship between validated sleep quality and perceived sleep quality, quality of life and daytime sleepiness. | Pittsburgh sleep quality index, Epworth sleepiness scale score, quality of life questionnaires and an OSA risk factor screen | Epworth sleepiness scale score = 9.0 ± 4.2 (a score >10 indicates excessive daytime sleepiness), Pittsburgh sleep quality index = 8.2 ± 3.3 (a score >5 is associated with poor sleep quality). It appears women’s sevens players suffer poor sleep quality, with associated high levels of daytime sleepiness. |
*Cohort, sample size and participant characteristics for women's rugby athletes only. AST = aspartate aminotransferase; CK = creatine kinase; CMJ = countermovement jump; CWI = cold water immersion; ES = effect size; GPS = global positioning systems; LDH = lactate dehydrogenase; OSA = obstructive sleep apnoea; sRPE = session ratings of perceived exertion; Tc = core temperature; TD = total distance; TQR = total quality of recovery.
Supplementary Table 2. Rugby code, participant and study characteristics, and key findings of studies within epidemiology focussed ‘injury’ evidence-based theme (n=32)

<table>
<thead>
<tr>
<th>Study</th>
<th>Rugby Code</th>
<th>*Cohort, sample size (n)</th>
<th>Time course</th>
<th>Injury definition</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>[51]</td>
<td>Union</td>
<td>Amateur (n=87)</td>
<td>1 season</td>
<td>Rugby-related injuries experienced in past week that either required medical attention or caused the player to miss at least one scheduled match or practice</td>
<td>Decrease in injury rate for females across the season (p=0.024) with an average decrease of 6.1% per week Female injury rate was generally lower in than in males. Games per person: women = 11.6, schoolgirls = 5.6 Game injuries per 100 player-games: women = 6.4, schoolgirls = 4.7 Practice/Injuries per 100 player-games: women = 19.6, schoolgirls = 7.3 Inside backs had the highest game (12.3 per 100 player-games) and practice (1.5 per 100 player-practices) injury rate.</td>
</tr>
<tr>
<td>[70]</td>
<td>Union</td>
<td>Women (n=64) and schoolgirl (n=23)</td>
<td>1 season</td>
<td>All injury events that caused the player to seek medical attention or to miss at least one scheduled game or team practice</td>
<td>Games per person: women = 11.6, schoolgirls = 5.6 Game injuries per 100 player-games: women = 6.4, schoolgirls = 4.7 Practice injuries per 100 player-games: women = 10.7, schoolgirls = 0 Inside backs had the highest game (12.3 per 100 player-games) and practice (1.5 per 100 player-practices) injury rate.</td>
</tr>
<tr>
<td>[69]</td>
<td>Union</td>
<td>Senior professionals, amateurs, juniors, cadets and school players (n=54340)</td>
<td>5 yrs</td>
<td>NR</td>
<td>28 women suffered an episode of dislocation/subluxation. ~5/10 000 women reported an episode of shoulder dislocation/subluxation per season</td>
</tr>
<tr>
<td>[57]</td>
<td>NR</td>
<td>Provincial (n=40)</td>
<td>1 season and 1 tournament</td>
<td>An injury that occurred as a result of participation in an organized high school rugby match or practice; required medical attention; and resulted in restriction of the high school rugby player’s participation in regular school or rugby activities for 1 or more days beyond the day of injury</td>
<td>35 injuries in 4958 player-hours and 2926 athletic exposures resulting in a rugby injury rate of 7.1 ± 0.4 per 1000 player-hours and 12.0 ± 2 per 1000 athletic exposures.</td>
</tr>
<tr>
<td>[54]</td>
<td>Union</td>
<td>High school (n=77)</td>
<td>2 seasons</td>
<td>An injury that occurred as a result of participation in an organized high school rugby match or practice; required medical attention; and resulted in restriction of the high school rugby player’s participation in regular school or rugby activities for 1 or more days beyond the day of injury</td>
<td>Girls injury rate = 4.1 injuries per 1000 total rugby athletic exposures The most commonly injured body sites for girls were the head (22.1%), ankle (13.2%), and shoulder (13.2%), with common diagnoses of fracture (16.8%), concussion (16.1%) and ligament sprain (14.9%). The mechanism of girls’ injuries were impact with another player (51.8%) or impact with surface or ground (24.4%), with the activity mostly being tackled (31.1%) or tackling (28.2%). Time loss from girls’ injuries was typically <10 days (45.1%).</td>
</tr>
<tr>
<td>[65]</td>
<td>Sevens</td>
<td>2014-15 SWS (n=197), 2015-16 SWS (n=221), 2016 Olympic (n=148)</td>
<td>12 tournaments over 3 yrs</td>
<td>Any injury sustained during the period of a Rugby-7s tournament (match or training session) that prevents a player from taking a full part in all training activities and/or match play for more than one day following the day of injury</td>
<td>Match injuries: 2014-15 SWS = 58, 2015-16 SWS = 56, 2016 Rio Olympics = 8 Player-match hour exposures: 2014-15 SWS = 655.2, 2015-16 SWS = 511.7, 2016 Rio Olympics = 8</td>
</tr>
<tr>
<td>[68]</td>
<td>Sevens</td>
<td>International (n=1562)</td>
<td>36 tournaments over 8 seasons</td>
<td>Any physical complaint sustained by a player during a SWS match that prevented the player from taking a full part in all training activities or match play for more than one day following the day of injury, irrespective of whether a match or training session was actually scheduled</td>
<td>Overall player-match-hour exposure = 3998 hrs Overall injury incidence = 105.6 injuries/1000 player-match-hours Overall mean severity = 53.4 days</td>
</tr>
<tr>
<td>[73]</td>
<td>Union</td>
<td>Senior and Schoolgirl (n=92)</td>
<td>1 yr</td>
<td>Any injury that required medical treatment of caused the player to miss at least one scheduled game or team practice.</td>
<td>59.6% of female players reported at least one injury during the 1992 season</td>
</tr>
<tr>
<td>[59]</td>
<td>Union</td>
<td>Collegiate (n=75)</td>
<td>1 season</td>
<td>Any physical damage suffered by a player</td>
<td>Overall injury rates = 68 and per 100 women players Disabling injuries rates = 12 per 100 women players Females sustained 14 injuries to the head, 8 to the neck, 7 to the eye and 7 to the nose</td>
</tr>
<tr>
<td>[75]</td>
<td>League</td>
<td>Rugby league ACC claimants</td>
<td>8 yrs</td>
<td>NR</td>
<td>The lower limb accounted for 65% of the total female injury claims Concussion/brain injuries accounted for 3.8% of total female moderate to serious injury claims The 25–29 age group recorded 31.9% of injury claims</td>
</tr>
<tr>
<td>[76]</td>
<td>Union and League</td>
<td>Rugby league and union ACC claimants</td>
<td>10 yrs</td>
<td>Any injury that had been assessed and reported by a registered health practitioner as a result of sports participation The injury had to have been classified and recorded as a concussion utilizing the ACC read code</td>
<td>Female rugby union players were responsible for an average of 3.3 per 1000 moderate-to-severe claims Female rugby league player were responsible for 0.6 per 1000 moderate-to-severe claims</td>
</tr>
<tr>
<td>[77]</td>
<td>Union</td>
<td>Rugby union ACC claimants</td>
<td>5 yrs</td>
<td>Any injury (minor, moderate-to-serious and serious injury) that had been assessed and reported by a registered health practitioner as a result of sports participation</td>
<td>26,070 total claims for female rugby union The 15–19-year age group recorded 40% of the total female rugby union moderate-to-serious and serious claims The knee was the most commonly recorded injury site accounting for 40.3% of moderate-to-serious claims</td>
</tr>
<tr>
<td>[53]</td>
<td>Union</td>
<td>Amateur (n=69)</td>
<td>2 seasons</td>
<td>Any physical complaint, which is caused by a transfer of energy which exceeds the ability of the body’s ability to maintain its structural and/or functional integrity, that is sustained by a player during rugby trainings, irrespective of the need for medical attention or time-loss from rugby activities</td>
<td>Injury incidence = 11.4 per 1000 training-hours Time loss injury incidence = 3.6 per 1000 training hours The lower limb recorded the highest total days-lost (170 days) with a mean of 7.4 ± 12.5 days per injury</td>
</tr>
<tr>
<td>[58]</td>
<td>Union</td>
<td>Provincial (n=143)</td>
<td>1 tournament</td>
<td>NR</td>
<td>9 injuries to female rugby players at 15.7 per 100 athletes</td>
</tr>
<tr>
<td>[60]</td>
<td>NR</td>
<td>Collegiate (n=810)</td>
<td>4 seasons</td>
<td>Any injury to the knee region that resulted in a player missing one game or two practices. All injuries had to have been diagnosed by a physician or an athletic trainer. Any intraarticular injuries had to have been confirmed by arthroscopic evaluation or magnetic resonance imaging.</td>
<td>Overall knee injury rates = 88 and per 1000 exposures Knee injury rate = 1.3 per 1000 exposures 21 ACL tears were reported for a 0.36 incidence per 1000 exposures; other injuries included meniscal tears (n=25), MCL sprains (n=23), patellar dislocations (n=5), and posterior cruciate ligament tears (n=2) Forwards sustained 61% of MCL sprains, backs sustained 67% of ACL tears Female injury rate = 10.0 injuries per 1000 playing hours No sex-difference was observed based on player position or average age of injured players For both men and women 48 injuries occurred over 4 tournaments, for an injury rate of 55.4 injuries per 1000 playing hours. Head and neck injuries were most common (33.3% of injuries), followed by upper extremity (31.3%), trunk (18.8%) and lower extremity (14.6%). The most common type of injury was ligament sprain (25.0%); followed by concussion (14.8%) and hematoma/contusion (12.5%). Tackling was the most common mechanism of injury (74.5%)</td>
</tr>
<tr>
<td>[52]</td>
<td>Sevens</td>
<td>Amateur (n=658)</td>
<td>4 1-day tournaments over 2 months</td>
<td>Any physical complaint caused by transfer of energy that exceeded the body’s ability to maintain its structural and/or functional integrity, sustained by a player during a rugby match</td>
<td>76 total knee injuries in 58 296 exposures Knee injury rate = 1.3 per 1000 exposures</td>
</tr>
</tbody>
</table>
Any physical complaint caused by transfer of energy that exceeded the body's ability to maintain its structural and/or functional integrity, sustained by a player during a rugby match.

Women encountered concussions at 8.1/1000 ph, and men at 7.6/1000 ph. Women missed 36.7 days absence from play. The incidence of repetitive concussions was not statistically different between genders (Relative risk = 1.09, P = 0.754). Most concussions occurred from tackles (63%) and collisions (24%) (P = 0.056).

Overall injury incidence = 85.9 per 1000 player-hours. Lower extremity injuries were most prevalent injury location (38.1%). Joint (non-bone)/ligament was the most common injury type (42.9%).

Incidence = 22.2 per 1000 player-hours (U13-U18 female). Severity = 13 ± 11 days. Joint injuries and bruises/contusions/haematoma/cork accounted for 69.4% of female injuries.

71 members of the women’s team sustained 200 injuries during 68,633 athletic exposures. Injuries included 9 ACL, 18 glenohumeral instability, 9 AC joint sprain, 30 concussions, 5 face lacerations, 5 eye injuries, 1 head other injuries and 6 fractures. Incidence rate 30% lower in women than men (IRR = 1.30). ACL incidence rate was 5.3 times higher in women (IRR = 5.32) than in men.

3138 ± 925 claims were made per year by 15,120 ± 4370 female players. Mean injury type claim rate per 1000 female players per year = 168 soft tissue, 20 fracture/dislocation, 6.5 for both laceration and concussion/brain injury and 2.6 for dental. For female players, the probability of making at least one injury claim increased from 0.4% per year at age 5 years through 58–64% for players aged 22 through to 40 years.

Women were most frequently injured in the head (23%) and shoulder (12.3%). The biggest variation for injury proportion rates between men and women was shown in the regions of the mouth (IPR 4.23), ear (IPR 3.48), face (IPR 2.62), and eyeball (IPR 2.57) which all occurred more frequently in men. Women were most prone to sprain/strains (34.4%), followed by contusions (15.7%) and fractures (15.1%).
Any physical complaint, which was caused by a transfer of energy that exceeded the body’s ability to maintain its structural and/or functional integrity, that was sustained by a player during a rugby match or rugby training, irrespective of the need for medical attention or time-loss from rugby activities.

Overall IIR = 10/1000 player hours, match-play IIR = 37.5/1000 player hours, practice IIR 12.5/1000 player hours
IIR for forwards = 39.3/1000 player hours, IIR for backs = 42.2/1000

The front row had the highest injury rate (62.5/1000 player hours). 63.6% of injuries occurred during the tackle.

Most injuries occurred to the neck, knee and head/face. Most injuries were sprains, muscle injuries and contusions

% of injury = 53.3
Facial injuries = 30.0%
26.7% of women’s league players reporting having observed a dental injury
Women’s league players had the lowest percentage of dental injuries (4.4%).

Number of female rugby sevens injuries = 26
Five of these injuries were estimated to have a >7 day time-loss
36.6% of female rugby sevens players were injured (greatest in all female sports)
IIR = 43% (both male and female rugby players)

27 women’s squad players sustained 152 injuries at an incidence of 40.8 per 1000 player hours.
Female injuries commonly occurred in the lower limb (63.2%). The knee (13.2%) and the ankle (12.5%) were the most injured sites. The nature of injuries were typically joint sprains (24.3%) or muscle injuries (20.4%).
*Cohort and sample size characteristics for women's rugby athletes only. AC = acromio-clavicular; ACC = Accident Compensation Corporation; ACL = anterior cruciate ligament; IIR = injury incidence rate; IPR = injury proportion ratio; IRR = incidence rate ratio; MCL = medial collateral ligament; NR = not reported; RR = relative risk; SWS = Sevens World Series
Supplementary Table 3. Rugby code, participant characteristics, aims, outcome measures and key findings of studies within ‘injury risk, management, prediction’ focussed evidence-based theme (n=16)

<table>
<thead>
<tr>
<th>Study</th>
<th>Rugby Code</th>
<th>*Cohort, sample size (n)</th>
<th>*Participant characteristics: age (yrs), height (cm), body mass (kg)</th>
<th>Study aims</th>
<th>Study outcome measures</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>[94]</td>
<td>Union</td>
<td>University (n=644)</td>
<td>20 ± 2 yrs; 167 ± 11 cm; 74 ± 21 kg</td>
<td>To determine whether the FMS components can predict injury in female and male rugby union players and whether differences exist in the FMS scores of injured and non-injured players.</td>
<td>FMS scores, injury type, location, mechanisms, severity, playing exposure</td>
<td>Female training injury rate: 5.80 injuries/1000 hours Female match injury rate: 55.56 injuries/1000 hours FMS individual components predicted 37.4% of the variance in total days injured in females.</td>
</tr>
<tr>
<td>[90]</td>
<td>Union</td>
<td>High school (n=170)</td>
<td>16.5 yrs</td>
<td>To provide reference scores for high school rugby union players on the SCAT5, including immediate memory using the 10-word list, and examine how age, sex, and concussion history affected performance.</td>
<td>SCAT5 scores, including total number of symptoms, symptom severity, 10-word immediate memory, delayed memory, modified Standardized Assessment of Concussion, and balance examination.</td>
<td>Median symptom severity was highest in females with a concussion history (13, range = 0–45). Median total scores on immediate memory were 21 for females. Being female was associated with a higher total symptoms score, higher total symptom severity score, and lower number of errors on the balance examination.</td>
</tr>
<tr>
<td>[95]</td>
<td>NR</td>
<td>Collegiate varsity (n=13)</td>
<td>21 ± 2 yrs; 167 ± 7 cm; 73 ± 6 kg</td>
<td>To investigate subtle underlying neurological deficits that may accompany recurrent mild head impacts in female rugby</td>
<td>Centre of pressure, time to target and time to centre during static and dynamic balance tasks; Solecus H-reflexes; concussive events</td>
<td>172 potential concussive events were verified. Static balance performance was worse at post-season (p=0.03). Dynamic postural performance improved after the season (p<0.01). Spinal cord excitability did not change, but deviated from normative values at baseline.</td>
</tr>
<tr>
<td>[97]</td>
<td>Union, Sevens, League</td>
<td>Sub-elite and elite (n=NR)</td>
<td>NR</td>
<td>To investigate the occurrence, causes and perceived performance effects of contact breast injuries sustained by female contact football players; how the occurrence injuries varied among codes, positions and competition levels; and the awareness and perceptions of coaches and medical professionals about contact breast injuries.</td>
<td>Questionnaire assessing self-reported breast injury occurrence and cause, and perceived performance effects</td>
<td>46-68 players reported contact breast injuries (code dependant) 48% of female contact football codes perceived that injury affected performance 63% female rugby union players reported sustaining breast injuries caused by contact with another player</td>
</tr>
<tr>
<td>[92]</td>
<td>Union</td>
<td>Club (n=13)</td>
<td>NR</td>
<td>To explore the effect of concussion history on head control during front on rugby tackles in non-professional male and female Rugby Union players.</td>
<td>Concussion history, triaxial accelerometer (CSx): linear and rotational head acceleration, normalized Surface EMG amplitude of the bilateral sternocleidomastoid, upper trapezius and splenius capitis.</td>
<td>Players with 12-month concussion history had the highest head acceleration (females = 48.6g, males = 68.3g, p<0.05) with lower trapezius (6.9–11.7%, p<0.05) and splenius capitis (3–12%, p<0.05) amplitudes compared to athletes with no-concussion.</td>
</tr>
<tr>
<td>[98]</td>
<td>NR</td>
<td>High level and professional (n=5)</td>
<td>NR</td>
<td>To evaluate a standardized management of brain concussion among rugby players to prevent the recurrence</td>
<td>Time to return to play, concussion recurrence rate, Cantu Grading system for concussion, SCAT2, Trail Making Test, CT or MRI.</td>
<td>33 (male and female) patients returned to rugby after a mean 22.1 ± 10 days. Post-concussive syndrome lasted a median of 15 days in women and 4 in men (p=0.04). Return to sport delay was longer in women than in men (30 vs. 21 days; p = 0.19)</td>
</tr>
<tr>
<td>[101]</td>
<td>NR</td>
<td>Varied quality/levels (n=258)</td>
<td>27 ± 7 yrs</td>
<td>To describe the patterns of injury among USA female rugby players, to assess the players’ perception of foul play and the referee response to foul play, and to evaluate the association between players’ perception of foul play and injury.</td>
<td>Questionnaire assessing injuries, perceived history of foul play</td>
<td>107 total injuries. Match injury rate = 4.4 per 100 matches. Practice injury rate = 0.2 injuries per 100 practices 16.5% of players admitted to perpetrating foul play without an assessed penalty. 13.8% of players had been penalised for foul play 24.9% of injured players believed they had been injured as a result of foul play. Mouthguards use = 90.8% < 15% of players reported having always worn other types of protective equipment. Mouthguards, padded headgear, and shoulder pads were worn ‘to prevent injury’, ankle braces,</td>
</tr>
<tr>
<td>[100]</td>
<td>NR</td>
<td>Varied quality/levels (n=234)</td>
<td>26 ± 6 yrs</td>
<td>To assess the prevalence of protective equipment-use among a sample of USA female rugby players and to evaluate their motivation for using different types of protective equipment</td>
<td>Questionnaire assessing rugby participation and protective equipment use</td>
<td></td>
</tr>
<tr>
<td>Union</td>
<td>Community (n=425)</td>
<td>Identification: Association between diagnosis and injury in a group of rugby players and the risk of injury between males and females</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amateur (n=49)</td>
<td>27 ± 7 yrs; 165 ± 7 cm; 87 ± 16 kg</td>
<td>To investigate the use of the King-Devick test for the sideline assessment of concussive injuries in an amateur women’s rugby union team</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rugby schools</td>
<td>NR</td>
<td>To ascertain the extent of injury surveillance and prevention practices currently in operation and the availability of qualified personnel across Rugby playing schools in the Republic of Ireland.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University (n=20)</td>
<td>22 ± 2 yrs; 168 ± 5 cm; 71 ± 9 kg</td>
<td>Examine lumbar multifidus characteristics in male and female university rugby players and their possible associations with low back pain and lower limb injury</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women and schoolgirls (n=87)</td>
<td>NR</td>
<td>To describe the level of usage of protective devices and equipment in a cohort of New Zealand rugby players</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sevens University (n=14)</td>
<td>20 ± 1 yrs; 161 ± 4 cm; 53 ± 5 kg</td>
<td>To investigate injury incidence and the influence of physical fitness parameters on the risk of severe injuries in players on rugby sevens university teams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International (n=764)</td>
<td>NR</td>
<td>Compare SCAT5 baseline performance in large groups of professional men’s and women’s rugby players to determine whether reference limits used for the management and diagnosis of concussion should differ between sexes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amateur (n=24)</td>
<td>Forwards: 170 ± 4 cm; 87 ± 14 kg; Backs: 166 ± 7 cm; 70 ± 11 kg</td>
<td>To investigate intrinsic and extrinsic risk factors associated with injury in amateur male and female Rugby Union players.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagnosed concussion = 278
- Lower extremity musculoskeletal injury = 396
- Females had significant associations for concussion and lower extremity musculoskeletal injury (OR = 2.49)
- There was good to excellent reliability of the King-Devick test for baseline (ICC:0.84 to 0.89), post-injury (concussion) sideline screening (ICC: 0.82 to 0.97) and post-season evaluation (ICC:0.79 to 0.83).

Respondents = 93 schools [356 (97% male, 3% female) teams]
- Schools monitoring rugby injuries = 86%
- Schools providing physiotherapy = 28%
- Schools providing strength and conditioning coach = 44%
- Schools not implementing injury prevention measures = 31%

Neoprene sleeves, and athletic tape on joints were worn to protect a current/recent injury.

Diagnosed concussion = 278
- Lower extremity musculoskeletal injury = 396
- Females had significant associations for concussion and lower extremity musculoskeletal injury (OR = 2.49)
- There was good to excellent reliability of the King-Devick test for baseline (ICC:0.84 to 0.89), post-injury (concussion) sideline screening (ICC: 0.82 to 0.97) and post-season evaluation (ICC:0.79 to 0.83).

Respondents = 93 schools [356 (97% male, 3% female) teams]
Sample size and participant characteristics for women’s rugby athletes unless otherwise specified. CT = computerized tomography; FMS = Functional Movement Screen; HR = hazard ratio; IMTP = isometric mid-thigh pull; MRI = Magnetic resonance imaging; NR = not reported; OR = odds ratio; SCAT = Sport Concussion Assessment Tool; YYIRT = Yo-Yo Intermittent Recovery Test.
Supplementary Table 4. Rugby code, participant characteristics, aims, outcome measures and key findings of studies within physical characteristics focussed ‘match characteristics’ evidence-based theme (n=21)

<table>
<thead>
<tr>
<th>Study</th>
<th>Rugby Code</th>
<th>*Cohort, sample size (n)</th>
<th>*Participant characteristics: age (yrs), height (cm), body mass (kg)</th>
<th>Study aims</th>
<th>Number of matches (n)</th>
<th>Study outcome measures</th>
<th>Key findings</th>
</tr>
</thead>
</table>
| [117] | Union | Premier division forwards (n=68) and backs (n=61) | Forwards: 25 ± 5 yrs; 173 ± 6 cm; 79 ± 7 kg
Backs: 25 ± 6 yrs; 165 ± 8 cm; 66 ± 5 kg | To determine the match demands of elite English women’s rugby union, identify positional differences, and between-player variability. | 14 | GPS (Catapult Minimax 54): TD, distance in various speed zones, maximum speed, PlayerLoad, RHIE | Mean TD = 4982 m, relative distance = 54.8±9.1 m·min⁻¹, PlayerLoad = 531±97
Backs moderately > forwards for maximum speed, high-intensity running, sprinting (p<0.05). Forwards moderately > backs for time spent jogging (p<0.05)
Average TD = 5320±921 m |
| [114] | Union | Provincial (n=20) | Junior: 164 ± 7 cm; 64 ± 12 kg
Senior: 170 ± 7 cm; 70 ± 9 kg
Elite: 169 ± 2 cm; 69 ± 4 kg | To quantify running demands in female rugby union players during Farah Palmer Cup matches (New Zealand). | 7 | GPS (VX Log, VX Sport): TD, high-intensity running, meters per minute, maximum speed | Backs were faster than forwards (26±2 vs. 22±3 km·h⁻¹) and covered greater high-intensity running distance (651±252 vs. 252±229) (p<0.05) |
| [124] | Sevens | Junior (n=13), senior (n=22), elite (n=11) | Junior: 164 ± 7 cm; 64 ± 12 kg
Senior: 170 ± 7 cm; 70 ± 9 kg
Elite: 169 ± 2 cm; 69 ± 4 kg | To quantify the game running movement patterns, anthropometric and physical characteristics of male and female rugby sevens players across 3 playing levels. | 6 | GPS (SPI HPU GPSports) derived: TD, max speed, max acceleration, number of impacts >10 g, relative TD, total and percent distance covered >3.5 m·s⁻¹ and >5 m·s⁻¹, total and percent sprint distance, and mean sprint duration.
Physical characteristics: height, body mass, and sum of 7 skinfold sites, 40m sprint, vertical jump test, YIRT-1 | In females, elite players had more favourable on- (max speed = 8.0±0.5, distance >5 m·s⁻¹ = 120±41) and off-field performance measures than juniors (max speed = 7.28±0.83, distance >5 m·s⁻¹ = 89±52) and seniors (max speed = 7.48±0.52, distance >5 m·s⁻¹ = 102±44) |
| [102] | Sevens | International (n=12) | 23 ± 4 yrs; 169 ± 2 cm; 69 ± 4 kg | To assess the ability of automated collision detection software in GPSports units, compared to manually coded video notational analysis, in men’s and women’s rugby sevens. | 1 men’s, 1 women’s | Video-derived notational analysis for collision events
Accelerometer (SPI HPU, GPSports) derived collisions >3.5G | Precision (men’s and women’s) = −0.72 (scale: 0.00–1.00)
62% of collisions for women were incorrectly labelled |
| [109] | Sevens | International (n=16) | 23 ± 2 yrs; 166 ± 7 cm; 68 ± 7 kg | To determine the effectiveness of a commercially available energy drink on the running activity profiles of elite female rugby sevens players during an international tournament. | 2 | Urine analysis (Agilent Technologies HPLC 1200): caffeine, paraxanthine, theobromine, and theophylline concentrations
Physical characteristics: 15 sec maximal jump test, 6 x 30-m sprint test | Energy drink increased muscle power output during the jump series, running pace during the games and pace at sprint velocity (p≤0.05).
Energy drink did not affect maximal running speed during the repeated sprint test but did increase mean HR during games (p<0.05). |
| [112] | League | Elite (n=17) | 25 ± 6 yrs; 171 ± 5 cm; 74 ± 7 kg | To investigate the validity of the Catapult algorithm to automatically detect and differentiate tackles when compared with video-coded tackles | 1 | Video-derived notational analysis for tackle events
GPS (Optimeye S5) derived tackle | Players engaged in 512 tackle events (30 ± 17 per player)
Sensitivity = 76%; Precision = 83% |
| [122] | League | International and domestic (n=58) | NR | To describe the whole match and peak duration-specific locomotor characteristics at international and domestic levels | 4 international, 5 domestic | GPS (Optimeye S5): TD, high-speed distance, sprinting, average speed, average acceleration | International forwards most likely > domestic forwards for peak 1-min average acceleration and peak 3-min acceleration (0.79 and 0.66 vs. 0.70 and 0.54).
International backs likely > domestic backs for peak 1-min average acceleration and possibly high-speed distances (0.78 and 241 vs. 0.73 and 190). |

To evaluate the effects of contextual game factors on activity and physiological profiles of international-level women’s rugby sevens players

GPS (Minimax S4): TD, distance in different speed zones, PlayerLoad (relative and absolute). HR

TD (776±118 vs. 640±180 m), high-speed distance (154±57 vs. 124±59 m), PlayerLoad (84±18 vs. 69±20AU) > 1 half vs. 2nd half (p<0.05)

TD (145±52 vs 113±290 m), moderate-speed distance (964±204 vs. 913±289 m) and very high-speed distance (133±59 vs. 104±42 m) > losses vs. wins (p<0.05)

Women’s sevens players median TD = 3823 m (relative distance of 44 m/min²). Average session duration 91 mins 0.47 sprints·min⁻¹; 0.17 repeated sprints·min⁻¹

1659 impacts to the head >10g were recorded (range: 10g–91g) Impacts per match = 184±18

Highest mean resultant linear acceleration = 16g 120 total head impacts 115 (18.1 g – 78.9 g) and 4 concussions with 1199 total athlete exposures

67 match head impacts; mean rate of 0.40±0.22 hits per player per-match, median peak linear acceleration = 32.2 g, and peak rotational acceleration = 13.5 rad·sec⁻¹ 53 practice head impacts; mean rate of 0.05±0.04 hits per player per-practice, median peak linear acceleration = 28.9 g and peak rotational acceleration of 15.7 rad·sec⁻¹

Mean distance = 1 625 ± 132 m (116.1 ± 9.4 m·min⁻¹)

High-speed distance = 199 ± 44 m (14.2 ± 3.1 m·min⁻¹)

Reductions in high-speed running (p = 0.003) and increases in lower speed running were observed across halves of play (p = 0.04)

Players spent >75% of the time <80% of HR maximum

To quantify the movement patterns and compare sessions of preparation training camps for international women’s rugby sevens players

GPS (SPI Pro, GPSports): TD, sprint distance, accelerations, decelerations, sprints and repeated sprints

SDRPE

114 subjects (42% forwards); 97% change in distance covered between sessions (p<0.05)

92.3% velocity change between sessions (p<0.05) and 91. 8% relative change in sprints per session (p<0.05)

To quantify impacts to the head via an instrumented patch worn behind the ear for women rugby league players over one season

Accelerometer and Gyroscope (XPatch): linear acceleration and angular velocity

Impacts per match = 244±28

160 head impacts >10g (12g–91g) per match

120 total head impacts 115 (18.1 g – 78.9 g) and 4 concussions with 1199 total athlete exposures

67 match head impacts; mean rate of 0.40±0.22 hits per player per-match, median peak linear acceleration = 32.2 g, and peak rotational acceleration = 13.5 rad·sec⁻¹ 53 practice head impacts; mean rate of 0.05±0.04 hits per player per-practice, median peak linear acceleration = 28.9 g and peak rotational acceleration of 15.7 rad·sec⁻¹

Mean distance = 1 625 ± 132 m (116.1 ± 9.4 m·min⁻¹)

High-speed distance = 199 ± 44 m (14.2 ± 3.1 m·min⁻¹)

Reductions in high-speed running (p = 0.003) and increases in lower speed running were observed across halves of play (p = 0.04)

Players spent >75% of the time <80% of HR maximum

To describe head impact kinematics and subsequent concussive events in a collegiate level women’s rugby team over one competitive season including both practices and games.

Smart Impact Monitors (Triax Technologies): frequency, magnitude and location of head impacts

125 total head impacts ≥15 g (18.1 g – 40.9 g) and 4 concussions with 1199 total athlete exposures

67 match head impacts; mean rate of 0.40±0.22 hits per player per-match, median peak linear acceleration = 32.2 g, and peak rotational acceleration = 13.5 rad·sec⁻¹ 53 practice head impacts; mean rate of 0.05±0.04 hits per player per-practice, median peak linear acceleration = 28.9 g and peak rotational acceleration of 15.7 rad·sec⁻¹

Mean distance = 1 625 ± 132 m (116.1 ± 9.4 m·min⁻¹)

High-speed distance = 199 ± 44 m (14.2 ± 3.1 m·min⁻¹)

Reductions in high-speed running (p = 0.003) and increases in lower speed running were observed across halves of play (p = 0.04)

Players spent >75% of the time <80% of HR maximum
To profile distances covered during women’s rugby union match-play and assess WCS locomotor demands over 1-10min epochs, whilst comparing the FIXED vs ROLL methods and assessing positional influences.

GPS (Optimeye S5): TD and high speed running

TD = ∼5.8 km per match, with reduced distances in the 2nd vs 1st half (p < 0.001). FIXED underestimated WCS total and high-speed distance (p<0.001). In ROLL, WCS relative total and high-speed distances reduced from ∼144-161 m·min⁻¹ and ∼30-69 m·min⁻¹ over 60-s, to ∼80-89 m·min⁻¹ and ∼5-16 m·min⁻¹ in the 600-s epoch, respectively. Forwards < backs for high-speed running and TD during 60-s, 180-s, 420-s and 480-s epochs (p<0.001)

Average distance per game = 1 556±189 m
% of time spent: standing and walking = 30; jogging = 33; cruising = 12; striding = 16; high-intensity running = 4; sprinting = 5
Average maximal sprint distance = 25.8±16.1 m; mean sprint distance = 17.2±8.8 m; # of sprints = 5.3±3.2
Work-to-rest ratio = 1:0.4

To describe locomotive activities and exercise intensity during international female rugby union and compare playing positions.

GPS (SPI Pro X, GPSports): distance in various speed zones, accelerations, body impacts.

Mean sprint count = 4.7±3.9; Mean max sprint distance = 20.6±10.5 m; Mean sprint distance = 12.0±3.8 m

International > developmental players for TD (1468±88m vs. 1252±135m), high-intensity running (224±55m vs. 131±44m), sprint distance (128±67m vs. 210±54m), total distance in high (264±36m vs. 210±54m), and more distance in high (264±36m vs. 210±54m) and maximal (69±17m vs. 30±15m) metabolic power categories
Developmental > international for peak (187±6bpm vs. 194±5bpm) and mean (172±7bpm vs. 180±9bpm) HR
International > developmental for YYIRT1 (1160±191m vs. 781±129m) and maximal sprint speed (27.3±0.7 km·h⁻¹ vs. 26.0±1.5 km·h⁻¹).

Cohort, sample size and participant characteristics for women’s rugby athletes only. HR = heart rate; FIXED = fixed epoch; N R = not reported; RHIE = repeated high intensity efforts; ROLL = rolling average; sRPE = session rating of perceived exertion; TD = total distance; WCS = worst-case scenario; YYIRT = Yo-Yo intermittent recovery test
Supplementary Table 5. Rugby code, participant characteristics, aims, outcome measures and key findings of studies within technical-tactical focussed ‘match characteristics’ evidence-based theme (n=5)

<table>
<thead>
<tr>
<th>Study</th>
<th>Rugby Code</th>
<th>*Cohort, sample size (n)</th>
<th>*Participant characteristics: age (yrs), height (cm), body mass (kg)</th>
<th>Study aims</th>
<th>Number of matches (n)</th>
<th>Study outcome measures</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>[128]</td>
<td>Sevens International</td>
<td>NR</td>
<td>23 ± 2 yrs; 166 ± 7 cm; 66 ± 7 kg</td>
<td>To analyse variables associated with winning teams in knock out Cup games, and to illustrate if winning characteristics are valid across genders.</td>
<td>30</td>
<td>Notation analysis: possessions, restarts, gaining possession, set piece, penalties, offensive options, defensive statistics, scoring.</td>
<td>Winning women’s teams gained more possession from handling turnovers, utilised more quick lineouts, had less ineffective set lineouts, threw more passes and made more ball-jolting tackles than losing women’s teams (p<0.05). Winning men’s teams utilised non-contested restarts more frequently, won a higher percentage of contested restarts, had more scrum feeds and made more effective tackles than losing men’s teams (p<0.05).</td>
</tr>
<tr>
<td>[126]</td>
<td>Sevens International</td>
<td>NR</td>
<td>23 ± 2 yrs; 166 ± 7 cm; 66 ± 7 kg</td>
<td>To examine link between coupling at the ruck, phase momentum and success</td>
<td>35</td>
<td>Notation analysis: Ruck type and frequency, winning and losing team</td>
<td>Winning women’s teams had a higher percentage of positive phases (p<0.01). Positive phase momentum is associated with four or more passes (p<0.001). Winning women created significantly more positive phases from 4&0 rucks than losing teams (p<0.05). Winning women’s teams scored significantly more tries from 2&2 rucks (p<0.05).</td>
</tr>
<tr>
<td>[127]</td>
<td>Sevens International</td>
<td>NR</td>
<td>23 ± 2 yrs; 166 ± 7 cm; 66 ± 7 kg</td>
<td>To identify and understand any relationships between ruck actions and ruck success in rugby sevens</td>
<td>65</td>
<td>Notation analysis: player numbers in the ruck, the actions of the first players to the ruck, ball placement, the body height, weight distribution and position of the attacking player in the ruck, ruck outcome</td>
<td>Attacking teams maintained ball possession: men = 69.2%; women = 72.5%. Women’s and men’s successful ruck actions were similar; 1 vs. 1 rucks were most commonly formed. If an attacking player arrived first, there was a greater chance of maintaining possession (p<0.001). An early jackal was most successful at producing turnovers (p<0.001).</td>
</tr>
<tr>
<td>[130]</td>
<td>Union International</td>
<td>NR</td>
<td>23 ± 2 yrs; 166 ± 7 cm; 66 ± 7 kg</td>
<td>To determine the effects of caffeine on the technical performance of female elite rugby sevens players and to assess whether caffeine improved the number of body impacts.</td>
<td>8</td>
<td>Notational analysis: tackle, kick, pass, penalty, impact and possession</td>
<td>Successful women’s teams displayed frequency of greater breaks, higher tackle completion, less pick and go’s, less rucks in the opposition 22-50m, more rucks in own 22-50m, less kicks in opposition 22-50m and less penalties conceded in their own 22 (p<0.038).</td>
</tr>
<tr>
<td>[129]</td>
<td>Sevens International (n=16)</td>
<td>23 ± 2 yrs; 166 ± 7 cm; 66 ± 7 kg</td>
<td>To determine the effects of caffeine on the technical performance of female elite rugby sevens players and to assess whether caffeine improved the number of body impacts.</td>
<td>2</td>
<td>Notational analysis: tackle, kick, pass, penalty, impact and possession</td>
<td>Frequency or the quality of any rugby-specific technical actions during the games were not affected by caffeine (p>0.05). The ingestion of the caffeinated energy drink increased the rate of body impacts in zones 1-3 and 5 (p<0.05).</td>
<td></td>
</tr>
</tbody>
</table>

Cohort, sample size and participant characteristics for women’s rugby athletes only. N/A = not applicable; NR = not reported
<table>
<thead>
<tr>
<th>Study</th>
<th>Rugby Code</th>
<th>*Cohort, sample size (n)</th>
<th>*Participant characteristics: age (yrs), height (cm), body mass (kg)</th>
<th>Comparisons between</th>
<th>Intervention duration</th>
<th>Study aims</th>
<th>Study outcome measures</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anthropometrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[141]</td>
<td>NR</td>
<td>Semi-professional (n=16)</td>
<td>25 ± 5 yrs; 161 ± 7 cm; 54 ± 6 kg</td>
<td>Non-athletic women N/A</td>
<td></td>
<td>To compare and quantify with USI the thickness of the TrAb, EO, IO, RA, and IRD in female rugby players versus non-athletic women.</td>
<td>Ultrasound imaging (Logic S7): thickness of TrAb, EO, IO, RA, and IRD</td>
<td>There were statistically significant differences for the ultrasound evaluation thickness of the right TrAb (p=0.011), EO (p=0.045), IO (p=0.003), and RA (p=0.001) showing a thickness increase for the rugby group with respect to the control group.</td>
</tr>
<tr>
<td>[142]</td>
<td>NR</td>
<td>University (n=NR)</td>
<td>28 ± 4 yrs; 161 ± 7 cm; 54 ± 6 kg</td>
<td>Badminton, Volleyball, Basketball, Futsal N/A</td>
<td></td>
<td>To examine the Q angle values of female athletes in different branches.</td>
<td>Q angle, pelvic width, femur length</td>
<td>Q angle = 21.5 ± 7.1° Pelvic width = 28.9 ± 4.7 cm Femur length = 41.3 ± 9.4 cm</td>
</tr>
<tr>
<td>[137]</td>
<td>Union</td>
<td>Club and university (n=30)</td>
<td>21 ± 2 yrs; 167 ± 11 cm</td>
<td>Netball players, distance runners, sedentary controls N/A</td>
<td></td>
<td>To determine local, regional and segmental DXA measurements of BMD among female rugby union, netball, and distance running participants and sedentary controls and to compare body composition measures.</td>
<td>Whole-body, lumbar spine, and total left hip areal bone mineral density Fat mass, fat free soft tissue mass, and fat percentages</td>
<td>Total body BMD = 1.26 ± 0.17 Body fat (%) = 29.5 ± 4.7</td>
</tr>
<tr>
<td>[143]</td>
<td>NR</td>
<td>Colleague (n=99)</td>
<td>NR</td>
<td>Collegiate athletes (cross country, gymnastics, dance, swim & dive, synchronized swimming, wrestling, olympic weightlifting, track & field, basketball, ice hockey, lacrosse, volleyball, water polo) N/A</td>
<td></td>
<td>To report sport-specific norms for FFM index in a diverse sample of female athletes, to determine whether these values differ between sports, and to identify a naturally-attainable threshold for FFM index in female athletes.</td>
<td>FFM index, fat mass, BMD, bone mineral content, body fat %</td>
<td>FFM index = 20.09 ± 2.23 FFM was significantly higher (p<0.05) in rugby than in gymnastics, ice hockey, lacrosse, swim & dive, and volleyball.</td>
</tr>
<tr>
<td>[138]</td>
<td>Union</td>
<td>Div 1 Collegiate (n=101)</td>
<td>20 ± 2 yrs; 166 ± 7 cm; 74 ± 15 kg</td>
<td>Positions N/A</td>
<td></td>
<td>To report anthropometrics in female collegiate rugby union players and to identify between-position differences in these variables.</td>
<td>BMI, body fat percentage, fat mass, FM index, FFM, FBF, lean soft tissue, bone mineral content, bone mineral area, and bone mineral density</td>
<td>Significant differences (p<0.014) were identified between forwards and backs for every anthropometric variable, with forwards displaying greater height (167.7 ± 7.2 cm), body mass (81.5 ± 15.1 kg), and body fat percentage (28.2 ± 6.1%) relative to backs (164.5 ± 5.1 cm; 64.5 ± 7.7 kg; 21.9 ± 3.7%).</td>
</tr>
<tr>
<td>[139]</td>
<td>Union</td>
<td>Elite (n=30)</td>
<td>26 ± 4 yrs; 171 ± 8 cm; 84 ± 14 kg</td>
<td>Positions N/A</td>
<td></td>
<td>Investigate the anthropometric and body composition characteristics of New Zealand elite female rugby union players</td>
<td>Body mass, Sum of 8 skinfolds, lean mass, fat mass, fat %, bone mineral content, and bone mineral density</td>
<td>Sum of 8 skinfolds (mm): backs = 94.4, forwards = 128.2 Fat (%): backs = 20.8, forwards = 26.5 Bone mineral content (kg): backs = 2.7, forwards = 3.1 (all p<0.05)</td>
</tr>
</tbody>
</table>
Biomechanics

[140] Union Elite (n=958)

<table>
<thead>
<tr>
<th>Forwards = 80 kg; Backs = 67.5 kg</th>
<th>Positions, sex, tier, time</th>
<th>N/A</th>
<th>To document the body mass of elite international men’s and women’s players at Rugby World Cups from the emergence of professionalism (early 1990s for men, 2010 for women) to the present day</th>
<th>Body mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Women’s forwards mass increased by 4.8% in Tier 1, with no changes in Tier 2 or backs from either tier</td>
</tr>
</tbody>
</table>

[145] Union Amateur (n=31)

<table>
<thead>
<tr>
<th>24 ± 3 yrs; 168 ± 5 cm; 69 ± 9 kg</th>
<th>Positions, control group, pre- and post-test</th>
<th>8 weeks</th>
<th>To observe the effect of 8 weeks of sled training with optimal loading for maximal power output production sprint performance</th>
<th>5 and 20 m sprint time and sprint mechanical outputs: index of balance between force and velocity, max force, max velocity, PPO, Rfmax and Drf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Both forwards and backs significantly improved (p ≤ 0.05) in 5 and 20 m sprint performance, and in the mechanical properties related to the horizontal Power-Force-Velocity profile</td>
</tr>
</tbody>
</table>

[144] Sevens International (n=18)

<table>
<thead>
<tr>
<th>24 ± 4 yrs; 172 ± 7 cm; 69 ± 7 kg</th>
<th>N/A</th>
<th>N/A</th>
<th>To describe the forces developed during machine scrummaging as a factor of playing level and evaluate the magnitude and characteristics of the force load on players may represent an issue for potential injury</th>
<th>Peak compression, average sustained push, drop from peak to sustained force, rise from minimum to sustained force, positive and negative impulse. Range of lateral force, average sustained lateral push</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Women’s peak compressive force = 8.7 kN Sustained compression forces spanned between 8.3 kN (International men) and 4.8 kN (Women)</td>
</tr>
</tbody>
</table>

[146] Union Club (n=16) and international (n=16)

<table>
<thead>
<tr>
<th>NR</th>
<th>Playing level</th>
<th>N/A</th>
<th>To describe the anthropometric and physical qualities of international level female sevens athletes and men and determine whether positional differences exist.</th>
<th>Sum of 7 skinfolds, 0-10 and 30-40m speed and momentum, SLJ, STJ, ISS, MSS, initial sprint momentum, and maximal sprint momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When categorized by SLJ there was a very large ES for top and bottom 50% SLJ and STJ (p<0.001) and a large ES for MSS (p<0.001). When categorized by STJ there was a very large ES for top and bottom 50% SLJ and STJ (p<0.001) and a large ES for ISS and MSS (p<0.001). A linear regression developed from STJ and body weight adequately predicted ISS (r = 0.645, p<0.001) and MSS (r = 0.761, p<0.001).</td>
</tr>
</tbody>
</table>

Performance

[157] Union and Sevens Inter-provincial, U20 International, Senior International (n=114)

<table>
<thead>
<tr>
<th>18 ± 3 yrs; 67 ± 7 kg</th>
<th>Top and bottom 50% of SLJ and STJ performance</th>
<th>N/A</th>
<th>To determine whether horizontal jumping can differentiate sprinting ability, to evaluate relationship between horizontal jumping and speed, to determine whether horizontal jumping and anthropometrics can predict kinematics variables</th>
<th>SLJ, STJ, ISS, MSS, initial sprint momentum, and maximal sprint momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When categorized by SLJ there was a very large ES for top and bottom 50% SLJ and STJ (p<0.001) and a large ES for MSS (p<0.001). When categorized by STJ there was a very large ES for top and bottom 50% SLJ and STJ (p<0.001) and a large ES for ISS and MSS (p<0.001). A linear regression developed from STJ and body weight adequately predicted ISS (r = 0.645, p<0.001) and MSS (r = 0.761, p<0.001).</td>
</tr>
</tbody>
</table>

[152] Sevens International backs (n=13) and forwards (n=11)

<table>
<thead>
<tr>
<th>Backs: 21 ± 4 yrs; 166 ± 6 cm; 66 ± 3 kg; Forwards: 24 ± 4 yrs; 171 ± 4 cm; 73 ± 5 kg</th>
<th>Positions</th>
<th>N/A</th>
<th>To describe the anthropometric and physical qualities of international level female sevens athletes and men and determine whether positional differences exist.</th>
<th>Sum of 7 skinfolds, 0-10 and 30-40m speed and momentum, SLJ, STJ, 1RM power clean, front squat, bench press, and neutral grip pull-up, 1600m average speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The backs and forwards had significant differences in body mass (86±3 vs. 73±5 kg; p=0.019) and initial sprint momentum (387±20 vs. 359±12 kg m s⁻¹; p=0.028). No other measures showed positional differences.</td>
</tr>
</tbody>
</table>

To examine the force-velocity profiling generated by adolescent rugby players in the squat and bench exercises and to compare sex-related differences.

To investigate differences in COD ability and speed- and power variables between male and female players; examine COD deficit differences; and analyse the relationships between COD deficit and COD speed.

To examine which, if any, physical qualities differentiate playing minutes in international women's rugby sevens players.

To investigate the physical fitness characteristics of elite female rugby union players.

To present the characteristics of elite female rugby league players by playing position and investigate the relationships between the measured variables.

To provide an introductory investigation of the relationships between lower-body power and multidirectional speed in collegiate female rugby players.

To evaluate the relationship between linear speed (0.5 m, 0-10 m, and 0-20 m sprint) and COD ability. To determine if the COD deficit identifies a different metric of COD ability for individuals when compared to the traditional 0.5 s time.
Physiology

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Participants</th>
<th>Measurements</th>
<th>Results/Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Union</td>
<td>Senior and schoolgirl (n=92)</td>
<td>Positions, grades</td>
<td>To document the size, shape, and physical performance characteristics of a cohort of New Zealand rugby players drawn from various grades, and to make comparisons between grades and positional categories.</td>
</tr>
<tr>
<td>[158]</td>
<td>NR</td>
<td>University (n=19)</td>
<td>Positions</td>
<td>To describe the body composition and performance characteristics of collegiate women rugby players and to compare the forwards to the backs regarding these variables.</td>
</tr>
<tr>
<td>[150]</td>
<td>Union</td>
<td>National All-Star Championship (n=24)</td>
<td>Positions</td>
<td>To represent fitness levels for elite world-class women rugby players.</td>
</tr>
<tr>
<td>[151]</td>
<td>Union</td>
<td>University beginners (n=10) and experienced (n=8)</td>
<td>Sex, experience level, ball-carrying technique</td>
<td>To assess sprint times with different ball-carrying techniques and to examine the effects of experience and sex.</td>
</tr>
<tr>
<td>[165]</td>
<td>NR</td>
<td>NR (n=19)</td>
<td>Relationships between variables</td>
<td>To investigate in female rugby players the relationships between these specific aspects of body composition and blood rheology.</td>
</tr>
<tr>
<td>[159]</td>
<td>Sevens</td>
<td>International (n=22)</td>
<td>Relationship between physical and physiological variables</td>
<td>To compare a field-based critical velocity running test to routine laboratory and field-based tests of aerobic fitness in women’s rugby T7’s players.</td>
</tr>
</tbody>
</table>
Supplemental material

[160] Sevens

International (n=12)

24 ± 5 yrs; 168 ± 4 cm; 68 ± 8 kg

Relationship between physiological variables

N/A

To establish a physiologically defined threshold for the analysis of high-intensity running. To explore game movement patterns using individualised speed thresholds, as well as the industry-used threshold.

[164] NR

International (n=15)

25 ± 6 yrs

N/A

N/A

To explore athletes’ past and current experiences and perceptions of the menstrual cycle in relation to its impact on sporting performance.

[163] NR

Sub-elite and elite (n=36)

26 ± 5 yrs; 168 ± 6 cm; 73 ± 10 kg

RMR prediction equations

N/A

To determine the accuracy of 7 equations in predicting RMR of female rugby athletes, and in addition to explore biomarkers of muscle damage and LEA.

[162] NR

Varsity (n=95)

20 ± 2 yrs

N/A

N/A

To determine the prevalence of urinary incontinence among female university varsity rugby player.

To analyze the relationship between skeletal muscle properties measured through TMG and the peak power output production capacity.

[187] Olympic

(2-14)

27 ± 5 yrs; 169 ± 5 cm; 68 ± 5 kg

High and low power production

N/A

To explore a comprehensive approach to physical preparation practices currently utilized in female rugby codes

Training

[188] Sevens

Elite (n=12)

24 ± 4 yrs; 169 ± 6 cm; 70 ± 5 kg

N/A

6 weeks

To evaluate weekly changes in CMJ performance in elite female rugby sevens players over the course of a 6-week training block of progressively increasing training load.

CMJ variables: power, force, velocity, height, displacement and mechanistic characteristics; training load, wellness

Comparing to the mean VT_{peak} threshold (3.5 m s$^{-1}$), the industry-used threshold of 5 m s$^{-1}$ underestimated the absolute amount of high-intensity running completed by individual players by up to 30%. Using an individualised threshold, high-intensity running could over- or underestimating high-intensity running by up to 14% compared to the mean VT_{peak} threshold.

To establish a physically defined threshold for the analysis of high-intensity running. To explore game movement patterns using individualised speed thresholds, as well as the industry-used threshold.

Questionnaire assessing menstrual cycle symptoms, perceptual impact, perceptual resolution and support

Almost all athletes (93%) reported menstrual cycle-related symptoms. 33% perceived heavy menstrual bleeding and 67% considered these symptoms impaired their performances. Two-thirds of athletes self-medicated to alleviate symptoms. Thematic analysis 4 general dimensions: symptoms; impact; resolution and support.

To determine the accuracy of 7 equations in predicting RMR of female rugby athletes, and in addition to explore biomarkers of muscle damage and LEA.

Body composition, RMR, risk of LEA, and CK

Measured RMR (indirect calorimetry) = 1651±167 kcal $·$d$^{-1}$. The Cunningham, Ten Haaf, and Watson (body mass) predicted values did not differ from measured (p=0.05), while all other predicted values differed significantly (p<0.001)

To determine the prevalence of urinary incontinence among female university varsity rugby player.

Self-administered questionnaire including demographics, Urogenital Distress Inventory short form, rugby related activities, degree of bother, previous treatment, desire for treatment and coping strategies

Urinary incontinence prevalence = 54% 90% leaked urine when competing in a rugby game. Most players reported they were not bothered or only slightly bothered by their urinary leaking.

To analyze the relationship between skeletal muscle properties measured through TMG and the peak power output production capacity.

TMG: vastus lateralis, rectus femoris, vastus medialis

High power presented an almost certainly higher PPO (ES = 3.00) than low power, as well as a very likely lower radial displacement (ES = 1.68) and velocity of deformation (ES = 1.87) of the vastus lateralis.

PPO was very largely related to the radial displacement (r = -0.75) and velocity of deformation (r = -0.70) of vastus lateralis.

To explore a comprehensive approach to physical preparation practices currently utilized in female rugby codes

CMI variables: power, force, velocity, height, displacement and mechanistic characteristics; training load, wellness

Training load increased from weeks 2-6 (ES = 2.47). CMI flight time, peak displacement, time to peak force and force at zero velocity displayed multiple changes indicative of diminished neuromuscular function.

Questionnaire assessing participant characteristics, pre-season, in-season and off-season physical preparation, recovery, monitoring and sport science technology, and unique aspects in female rugby

National or regional/state level female athletes = 78% Performance testing frequency = pre- (97%) and in-season (86%), off-season (23%)

Menstrual cycle monitoring = 22% Performance testing frequency = pre- (97%) and in-season (86%), off-season (23%)

Unique considerations = psycho-social, menstrual, physical

Supplemental material
| Sample size and participant characteristics for women’s rugby athletes only. 1RM = one repetition maximum; BMD = bone mineral density; BMI = body mass index; CK = creatine kinase; CMJ = countermovement jump; COD = change of direction; Df = rate of decrease in the ratio of force; DXA = dual-energy X-ray absorptiometry; EO = external oblique; ES = effect size; FFM = fat-free mass; IO = internal oblique; IRD = interrecti distance; ISS = initial sprint speed; LEA = low energy availability; M1 = red blood cell facilitated aggregation at low shear rate after shearing at 600 s⁻¹; MSS = maximal sprinting speed; Myrenne M = red blood cell aggregation during stasis after shearing at 600 s⁻¹; N/A = not applicable; NR = not reported; PPO = peak power output; r = correlation coefficient; RA = rectus abdominis; Rmax = maximal value for the ratio of force; RMR = resting metabolic rate; SLJ = standing long jump; STJ = standing triple jump; TMG = tensiomyography; TrAb = transversus abdominis; VT2speed = speed at the second ventilatory threshold; W = watts. |
Supplementary Table 7. Rugby code, participant characteristics, aims, outcome measures and key findings of studies within 'nutrition' (n=6) and 'psychology' (n=5) evidence-based themes.

<table>
<thead>
<tr>
<th>Study</th>
<th>Rugby Code</th>
<th>*Cohort, sample size (n)</th>
<th>*Participant characteristics: age (yrs), height (cm), body mass (kg)</th>
<th>Study aims</th>
<th>Study outcome measures</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[111]</td>
<td>Sevens</td>
<td>International (n=23)</td>
<td>24 ± 5 yrs; 172 ± 5 cm</td>
<td>To quantify haematological changes in male and female rugby sevens players over a competitive season, and to quantifying the incidence of iron deficiency in female players.</td>
<td>Biochemical analysis: iron, ferritin, transferrin. Contraceptive use</td>
<td>Female pre-season ferritin concentrations = 51±24 μg·L, which declined substantially (20%) by mid-season, but recovered by end-season 23% female players were classified as iron deficient (ferritin <30 μg·L). Greatest deficiency incidence occurred in mid-season (30%). Oral contraception and dietary iron intake had unclear influence on female players’ ferritin concentration, while age was largely positively correlated (r=0.660.83).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>To establish hydration status, determine sweat loss, fluid intake, sweat, and blood sodium during training and match-play in female rugby league.</td>
<td>Urine osmolality, body mass, blood sodium concentration</td>
<td>Urine osmolality on arrival to match-play (382 ± 302 mOsmol·kg$^{-1}$) and training (667 ± 260 mOsmol·kg$^{-1}$) were indicative of euhydration. Players experienced a body mass loss of 0.50 ± 0.45 and 0.56 ± 0.53% during match-play and training, respectively. During match-play, players consumed 1.21 ± 0.43 kg of fluid and had a sweat loss of 1.54 ± 0.48 kg. During training, players consumed 1.07 ± 0.90 kg of fluid, in comparison with 1.25 ± 0.83 kg of sweat loss.</td>
</tr>
<tr>
<td>[135]</td>
<td>Union</td>
<td>University (n=16)</td>
<td>21 ± 2 yrs; 158 ± 40 cm; 78 ± 15 kg</td>
<td>To observe the hydration status, in male and female university rugby union players over 3 training sessions and to examine changes in sweat loss estimations.</td>
<td>Body mass, urine specific gravity, and self-reported thirst scores</td>
<td>Mean body mass changes did not exceed 2% lost for either gender on any of the three training sessions. Females significantly underestimated sweat loss by ~64% on day one (p<0.01), and improved estimations to ~60% on day three, however, still significantly underestimated (p<0.01). This finding was similar in males.</td>
</tr>
<tr>
<td>[136]</td>
<td>NR</td>
<td>Professional and amateur (n=61)</td>
<td>24 ± 5 yrs; 168 ± 6 cm; 68 ± 11 kg</td>
<td>Analyse the dietary supplementation consumption pattern in federated rugby players, including possible differences based on sex and competitive level</td>
<td>Questionnaire on dietary supplementation consumption</td>
<td>43% of female players consumed sports bars 39% of female players consumed caffeine 38% of female players consumed sports drinks 25% of female players consumed whey protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[171]</td>
<td>NR</td>
<td>International (n=18)</td>
<td>NR</td>
<td>To identify early maladaptive schema elements, that stimulate a “repair and healing game”, leading to high level athletic performance</td>
<td>Young’s Schemas Questionnaire</td>
<td>An average of 5 early maladaptive schemas per rugby player were identified. This included a wide variety (17 of 18). 83.3% of players showed self-sacrifice, 77.8% unrealistic standards/hypercriticism, 55.6% punishment, 50% entitlement/grandiosity and 50% approval seeking. Rugby players were deemed to have stronger emotional distress in comparison to handball players.</td>
</tr>
</tbody>
</table>

(Cohort, sample size (n): Sevens International (n=23); League International (n=10); Union University (n=16); NR Professional and amateur (n=61); Sevens Elite (n=17); Sevens Elite (n=43); NR International (n=18).)
To examine the participant motivation of Canadian women players by identifying positive influences on participation and what it is about rugby that motivates women to start and continue playing to an elite level.

Open-ended, semi-structured interviews

Participant motivation was multifaceted, encompassing motives which changed and evolved over time. As these players progressed from lower level teams to elite level, their motivation developed from their initial motivation to participate in rugby to focussing on achievement. Players’ rugby experiences were generally positive. Four major participation motivation themes comprised were identified: Getting started with rugby; Physical aspects; Achievement and success; On- and off-field player interaction.

Rugby players had positive associations between mental toughness and adaptive responses such as problem-focused, emotion-focused coping and feeling reorganized (p<0.05). Rugby players who would play through injury reported higher mental toughness than those who would not play through injury.

Rugby athletes avoided significantly later than non-athletes (0.94±0.30s vs. 1.52±0.14s, p<0.001).

All basic psychological needs were perceived to be highly fulfilled. Of the three interpersonal coaching styles, athletes’ perception of the autonomy support and involvement provided by their coaches were more strongly correlated with all three basic needs than structure.

*Cohort, sample size and participant characteristics for women’s rugby athletes only. NR = not reported; SF = serum ferritin
Supplementary Table 8. Expert-based sub-themes that did not reach consensus, median research priority (interquartile range) calculated from 5-point Likert scale, and percentage of expert agreement.

<table>
<thead>
<tr>
<th>Expert-based Theme</th>
<th>Sub-themes</th>
<th>Median Research Priority (IQR)</th>
<th>Low (%)</th>
<th>Medium (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female health</td>
<td>Relationship between hormonal contraceptive use, training and performance</td>
<td>4.0 (1.0)</td>
<td>17</td>
<td>27</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Pelvic health</td>
<td>3.0 (1.0)</td>
<td>13</td>
<td>50</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Effects of the menstrual cycle and hormonal contraceptives on concussion testing and treatment</td>
<td>3.0 (1.0)</td>
<td>13</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Use and decision-making process of hormonal contraceptive use</td>
<td>3.0 (1.0)</td>
<td>23</td>
<td>40</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Pregnancy and childbirth</td>
<td>3.0 (2.0)</td>
<td>30</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Breast health</td>
<td>3.0 (1.8)</td>
<td>33</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Urinary incontinence</td>
<td>2.5 (1.0)</td>
<td>50</td>
<td>33</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Polycystic ovarian syndrome</td>
<td>3.0 (1.0)</td>
<td>43</td>
<td>47</td>
<td>10</td>
</tr>
<tr>
<td>Injury</td>
<td>Strength profiling for high-risk areas (e.g., neck, shoulder)</td>
<td>4.0 (1.0)</td>
<td>10</td>
<td>23</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Recovery time-frames from specific injuries</td>
<td>3.5 (1.0)</td>
<td>13</td>
<td>33</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Injury and wellness (e.g., sleep, stress, mood, soreness) relationship</td>
<td>4.0 (1.0)</td>
<td>10</td>
<td>33</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Knowledge and attitudes of injury prevention</td>
<td>3.0 (1.0)</td>
<td>13</td>
<td>40</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Strategies to optimise injury education of players and coaches</td>
<td>3.5 (1.0)</td>
<td>13</td>
<td>37</td>
<td>50</td>
</tr>
<tr>
<td>Match Characteristics</td>
<td>4.0 (1.0)</td>
<td>13</td>
<td>37</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Match characteristics e.g., total distance, high-speed running distance (incl. performance levels [e.g., junior, elite], positional differences, halves of play and changes over time)</td>
<td>3.0 (1.0)</td>
<td>17</td>
<td>47</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Peak sequences in match-play (e.g., worst-case scenarios)</td>
<td>3.0 (1.8)</td>
<td>30</td>
<td>43</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Performance</th>
<th>4.0 (1.0)</th>
<th>13</th>
<th>27</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical characteristics (e.g., strength, speed, power) (incl. performance levels [e.g., junior, elite] and changes over time)</td>
<td>4.0 (1.0)</td>
<td>13</td>
<td>27</td>
<td>60</td>
</tr>
<tr>
<td>Interventions (training, nutritional) to enhance performance (e.g., strength training to optimise ball-carrying)</td>
<td>4.0 (1.0)</td>
<td>13</td>
<td>27</td>
<td>60</td>
</tr>
<tr>
<td>Preparation for tournament-play (e.g., short match turnaround in rugby world cups)</td>
<td>4.0 (1.0)</td>
<td>13</td>
<td>27</td>
<td>60</td>
</tr>
<tr>
<td>Training adaptations (incl. positional differences)</td>
<td>4.0 (1.0)</td>
<td>13</td>
<td>27</td>
<td>60</td>
</tr>
</tbody>
</table>

Neuropsychological testing (e.g., memory, executive function, dementia) of players, and relationship to injury history

Head acceleration kinematics

Nutritional strategies to reduce concussion risk

Relationship between match characteristics (e.g., total distance) and injury

Relationship between match characteristics (e.g., running distance) and key performance indicators (e.g., tackle success, time spent attacking)

Technical and tactical match-play characteristics (e.g., tackle, pass, decision-making)

Physical characteristics (e.g., strength, speed, power) (incl. performance levels [e.g., junior, elite] and changes over time)

Interventions (training, nutritional) to enhance performance (e.g., strength training to optimise ball-carrying)

Preparation for tournament-play (e.g., short match turnaround in rugby world cups)

Training adaptations (incl. positional differences)
<table>
<thead>
<tr>
<th>Topic</th>
<th>Rating (SD)</th>
<th>Mean (Min)</th>
<th>Mean (Max)</th>
<th>Mean (sd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal wellness (e.g., sleep, stress), training load (e.g., rating of perceived exertion) and physical performance (e.g., strength)</td>
<td>4.0 (1.0)</td>
<td>13</td>
<td>33</td>
<td>53</td>
</tr>
<tr>
<td>Difference in physical and performance characteristics between women and transwomen</td>
<td>3.5 (2.0)</td>
<td>30</td>
<td>23</td>
<td>47</td>
</tr>
<tr>
<td>Physiological profiles of women’s rugby players (e.g., biochemical markers)</td>
<td>3.0 (1.0)</td>
<td>23</td>
<td>30</td>
<td>47</td>
</tr>
<tr>
<td>Optimising microtechnology for female athletes (e.g., global positioning system [GPS] vests designed for women’s bodies, female-specific running speed thresholds)</td>
<td>3.0 (2.0)</td>
<td>30</td>
<td>23</td>
<td>47</td>
</tr>
<tr>
<td>Biomechanical effects (e.g., Q angle) on rugby performance (e.g., tackle, scrum, jackal)</td>
<td>3.0 (1.0)</td>
<td>23</td>
<td>43</td>
<td>33</td>
</tr>
<tr>
<td>Nutritional requirements and supplementation (incl. performance levels [e.g., junior, elite])</td>
<td>3.0 (0.8)</td>
<td>17</td>
<td>57</td>
<td>27</td>
</tr>
<tr>
<td>Relationship between physical performance (e.g., lower body strength) and rugby (e.g., dominant tackle)</td>
<td>3.0 (2.0)</td>
<td>30</td>
<td>37</td>
<td>33</td>
</tr>
<tr>
<td>Reliability of microtechnology for rugby specific skills (e.g., collisions, accelerations)</td>
<td>3.0 (1.0)</td>
<td>23</td>
<td>47</td>
<td>30</td>
</tr>
<tr>
<td>Anthropometric characteristics (e.g., body mass, bone mineral density) (incl. levels of performance [e.g., junior, elite])</td>
<td>3.0 (1.0)</td>
<td>17</td>
<td>57</td>
<td>27</td>
</tr>
<tr>
<td>Transwomen participation in rugby</td>
<td>3.0 (2.0)</td>
<td>33</td>
<td>23</td>
<td>43</td>
</tr>
<tr>
<td>Reliability and validity of physical performance tests</td>
<td>3.0 (1.8)</td>
<td>30</td>
<td>43</td>
<td>27</td>
</tr>
<tr>
<td>Residual training effect of physical characteristics (i.e., how long it takes to de-train)</td>
<td>2.0 (1.0)</td>
<td>53</td>
<td>33</td>
<td>13</td>
</tr>
<tr>
<td>Psychology</td>
<td>Psychological aspects of dual-career players</td>
<td>4.0 (1.8)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Topic</td>
<td>Mean (SD)</td>
<td>Median</td>
<td>Range</td>
<td>IQR</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Psychological demands of rugby</td>
<td>4.0 (1.0)</td>
<td>7</td>
<td>33</td>
<td>60</td>
</tr>
<tr>
<td>Optimising the relationship between (male) coaches</td>
<td>4.0 (1.0)</td>
<td>13</td>
<td>30</td>
<td>57</td>
</tr>
<tr>
<td>and women's rugby players</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychological barriers to rugby participation</td>
<td>4.0 (1.0)</td>
<td>17</td>
<td>27</td>
<td>57</td>
</tr>
<tr>
<td>Psychological aspects of post-rugby career players</td>
<td>3.0 (1.0)</td>
<td>17</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>Mental toughness</td>
<td>3.0 (2.0)</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

IQR, interquartile range.