Prevalence and correlates of physical activity in a sample of UK adults observing social distancing during the COVID-19 pandemic

Lee Smith, Louis Jacob, Laurie Butler, Felipe Schuch, Yvonne Barnett, Igor Grabovac, Nicola Veronese, Cristina Caperchione, Guillermo F Lopez-Sanchez, Jacob Meyer, Mohammad Abufaraj, Anita Yakkundi, Nicola Armstrong, Mark A Tully

ABSTRACT
Objective To investigate the levels and correlates of physical activity during COVID-19 social distancing in a sample of the UK public.
Methods This paper presents analyses of data from a cross-sectional study. Levels of physical activity during COVID-19 social distancing were self-reported. Participants also reported on sociodemographic and clinical data. The association between several factors and physical activity was studied using regression models.
Results Nine hundred and eleven adults were included (64.0% were women and 50.4% of the participants were aged 35–64 years). 75.0% of the participants met the physical activity guidelines during social distancing. Meeting these guidelines during social distancing was significantly associated with sex (reference: male; female: OR=1.60, 95% CI 1.10 to 2.33), age (reference: 18–34 years; ≥65 years: OR=4.11, 95% CI 2.01 to 8.92), annual household income (reference: <£15 000; £15 000–<£25 000: OR=2.03, 95% CI 1.11 to 3.76; £25 000–<£40 000: OR=3.16, 95% CI 1.68 to 6.04; £40 000–<£60 000: OR=2.27, 95% CI 1.19 to 4.34; ≥£60 000: OR=2.11, 95% CI 1.09 to 4.09), level of physical activity per day when not observing social distancing (OR=1.00 (per 1 min increase), 95% CI 1.00 to 1.01), and any physical symptom experienced during social distancing (reference: no; yes: OR=0.31, 95% CI 0.21 to 0.46).
Conclusion During COVID-19, social distancing interventions should focus on increasing physical activity levels among younger adults, men and those with low annual household income. It should be noted in the present sample that women and younger adults are over-represented.

INTRODUCTION
Physical activity is defined as any bodily movement produced by skeletal muscle that results in energy expenditure. Regular and sustained participation in physical activity is associated with almost every facet of health across the lifespan and importantly the prevention of all-cause early mortality. Moreover, acute exercise is an immune system adjuvant that improves defence activity and metabolic health. Global governments have produced recommendations for adequate levels of physical activity. One key message from the WHO guidance is that adults should achieve at least 150 min of moderate physical activity and/or 75 min of vigorous physical activity per week. However, despite this the proportion of UK adults meeting the physical activity guidelines is low and declines with age.

What are the new findings
► In the present sample of UK adults following UK COVID-19 social distancing guidance, a high level of physical activity was observed.
► Meeting physical activity guidelines was observed in women and older adults.
► Interventions should now be developed to support women and older adults in sustaining this level of physical activity post pandemic.
COVID-19, and the elderly were encouraged to engage in social distancing. This scenario is certainly a key life event that may have had an impact on population levels of physical activity. Moreover, social distancing guidance may influence physical activity in different ways dependent on age, sex, chronic conditions, socioeconomic status and marital status—all of which have been shown to be associated with physical activity during non-pandemic times.9 12–15 Therefore, the aim of the present study was to examine the levels of physical activity during the UK COVID-19 social distancing guidance and investigate how such levels vary by sociodemographic, behavioural, clinical and contextual factors.

METHODS
This paper presents preplanned interim analysis of data from a cross-sectional epidemiological study, administered through an online survey. The study was launched on 17 March 2020, 17 days after the first case of COVID-19 was diagnosed in the UK.

Participants were recruited through social media and through national media outlets. Adults aged 18 years and over, currently residing in the UK and observing social distancing, were encouraged to engage in social distancing. This scenario is certainly a key life event that may have had an impact on population levels of physical activity. Moreover, social distancing guidance may influence physical activity in different ways dependent on age, sex, chronic conditions, socioeconomic status and marital status—all of which have been shown to be associated with physical activity during non-pandemic times.9 12–15

Participants were recruited through social media and through national media outlets. Adults aged 18 years and over, currently residing in the UK and observing social distancing, were encouraged to engage in social distancing.

This scenario is certainly a key life event that may have had an impact on population levels of physical activity. Moreover, social distancing guidance may influence physical activity in different ways dependent on age, sex, chronic conditions, socioeconomic status and marital status—all of which have been shown to be associated with physical activity during non-pandemic times.9 12–15

Therefore, the aim of the present study was to examine the levels of physical activity during the UK COVID-19 social distancing guidance and investigate how such levels vary by sociodemographic, behavioural, clinical and contextual factors.

METHODS
This paper presents preplanned interim analysis of data from a cross-sectional epidemiological study, administered through an online survey. The study was launched on 17 March 2020, 17 days after the first case of COVID-19 was diagnosed in the UK. Participants were recruited through social media and through national media outlets. Adults aged 18 years and over, currently residing in the UK and observing social distancing, were encouraged to engage in social distancing. This scenario is certainly a key life event that may have had an impact on population levels of physical activity. Moreover, social distancing guidance may influence physical activity in different ways dependent on age, sex, chronic conditions, socioeconomic status and marital status—all of which have been shown to be associated with physical activity during non-pandemic times.9 12–15
distancing due to COVID-19 were eligible to participate. Participants were directed to a data-encrypted website where they indicated their consent to participate after reading an information sheet. Before completing the survey participants were asked if they were currently observing social distancing and were over 18 years of age. If the participant’s response was affirmative to both questions, the participant was asked to complete the survey.

Dependent variable

Participants were asked the following: (1) ‘How much time on an average day have you spent in vigorous activity since social distancing?’ and (2) ‘How much time on an average day have you spent in moderate activity since social distancing?’ Responses were reported in hours and minutes. Physical activity when social distancing was included in the analyses as a dichotomous (sufficient physical activity per day: yes or no) and a continuous (number of minutes of moderate-to-vigorous physical activity per day) variable. Following the WHO recommendations on physical activity levels per week, sufficient physical activity per day was defined as approximately 21 min of moderate physical activity and/or 11 min of vigorous physical activity per day.

Independent variables

Demographic data were collected, including sex (male or female), age (in 10-year age bands), marital status (single/separated/divorced/widowed or married/in a domestic partnership), employment (yes or no) and annual household income (ie, <£15 000, £15 000–<£25 000, £25 000–<£40 000, £40 000–<£60 000, ≥£60 000). Participants were also asked to indicate which of the four main UK countries they lived in. Behavioural factors included current smoking status (yes or no), current alcohol consumption (yes or no) and usual levels of moderate-to-vigorous physical activity per day during non-pandemic times (when not self-isolating). Participants were also asked to report chronic physical conditions. Finally, participants were asked if they had experienced any physical symptoms of COVID-19 during social distancing and the number of days they had been social distancing.

Statistical analyses

Sample characteristics were compared between participants who met and did not meet the physical activity guidelines using χ² tests for categorical variables and t-tests for continuous variables. The mean number of minutes of moderate-to-vigorous physical activity per day when social distancing was further compared between male and female participants using t-test, while it was compared between the three age groups using analysis of variance.

Logistic (dichotomous physical activity variable; sufficient physical activity per day: yes or no) and linear regression models (continuous physical activity variable; number of minutes of moderate-to-vigorous physical activity per day). Results from the logistic regression analysis are presented as ORs and 95% CIs, while beta coefficients with associated 95% CIs are displayed for the linear regression analysis. The level of statistical significance was set at p<0.05. The statistical analysis was performed with R V.3.6.2 (The R Foundation).

RESULTS

Nine hundred and eleven adults were included in this cross-sectional study (64.0% were women and 50.4% of the participants were aged 35–64 years; table 1). Overall, 75.0% of participants had sufficient physical activity during social distancing. The mean (SD) number of minutes of moderate-to-vigorous physical activity per day when social distancing was 94.0 (119.1), and significantly increased from 65.8 (77.7) in the age group 18–34 years to 152.9 (146.3) in the age group ≥65 years (figure 1). The logistic regression analysis showed that sufficient physical activity during social distancing was significantly associated with sex (reference: male; female: OR=1.60, 95% CI 1.10 to 2.33), age (reference: 18–34 years; ≥65 years: OR=4.11, 95% CI 2.01 to 8.92), annual household income (reference: <£15 000; £15 000–<£25 000: OR=2.03, 95% CI 1.11 to 3.76; £25 000–<£40 000: OR=3.16, 95% CI 1.68 to 6.04; £40 000–<£60 000: OR=2.27, 95% CI 1.19 to 4.34; ≥£60 000: OR=2.11, 95% CI 1.09 to 4.09), level of physical activity per day when not social distancing (OR=1.00 (per 1 min increase), 95% CI 1.00 to 1.01), and any physical symptom experienced during social distancing (reference: no; yes: OR=0.31, 95% CI 0.21 to 0.46; table 2). Similar findings were found in linear regression analyses.
DISCUSSION

The present study found that a total of 75% of the participants met the physical activity guidelines during UK COVID-19 social distancing. Moreover, women, older adults, those with higher annual household income and those not experiencing physical COVID-19 symptoms were significantly likely to be more physically active.

Previous studies have identified that approximately 58%–66% of the UK adult population meet physical activity guidelines, whereas the present study found that this level was at 75% during social distancing. During COVID-19 social distancing the UK public may have experienced an increase in discretionary time and thus may be using this additional discretionary time to be physically active.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Category</th>
<th>OR</th>
<th>95% CI</th>
<th>P value</th>
<th>β</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male Reference</td>
<td>1.60</td>
<td>1.10 to 2.33</td>
<td>0.015</td>
<td>16.45</td>
<td>0.50 to 32.00</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>Female Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>18–34 Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35–64</td>
<td>1.44</td>
<td>0.94 to 2.20</td>
<td>0.091</td>
<td>28.09</td>
<td>9.54 to 47.03</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>≥65</td>
<td>4.11</td>
<td>2.01 to 8.92</td>
<td><0.001</td>
<td>71.70</td>
<td>46.23 to 98.13</td>
<td><0.001</td>
</tr>
<tr>
<td>Marital status</td>
<td>Single/separated/divorced/widowed Reference</td>
<td>1.38</td>
<td>0.92 to 2.06</td>
<td>0.119</td>
<td>4.48</td>
<td>−12.28 to 21.37</td>
<td>0.601</td>
</tr>
<tr>
<td></td>
<td>Married/in a domestic partnership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td>No Reference</td>
<td>0.85</td>
<td>0.55 to 1.33</td>
<td>0.485</td>
<td>−21.67</td>
<td>−40.27 to 3.37</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>−21.67</td>
<td>−40.27 to 3.37</td>
<td>0.021</td>
</tr>
<tr>
<td>Annual household income</td>
<td><£15 000 Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>£15 000–<£25 000 Reference</td>
<td>2.03</td>
<td>1.11 to 3.76</td>
<td>0.023</td>
<td>35.88</td>
<td>9.04 to 62.66</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>£25 000–<£40 000 Reference</td>
<td>3.16</td>
<td>1.68 to 6.04</td>
<td><0.001</td>
<td>23.26</td>
<td>−3.20 to 50.01</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>£40 000–<£60 000 Reference</td>
<td>2.27</td>
<td>1.19 to 4.34</td>
<td>0.013</td>
<td>27.40</td>
<td>−0.74 to 55.29</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>≥£60 000 Reference</td>
<td>2.11</td>
<td>1.09 to 4.09</td>
<td>0.026</td>
<td>31.24</td>
<td>2.71 to 59.59</td>
<td>0.031</td>
</tr>
<tr>
<td>Region</td>
<td>England Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northern Ireland Reference</td>
<td>1.22</td>
<td>0.77 to 1.97</td>
<td>0.411</td>
<td>10.95</td>
<td>−8.04 to 30.07</td>
<td>0.260</td>
</tr>
<tr>
<td></td>
<td>Scotland Reference</td>
<td>3.42</td>
<td>0.84 to 23.35</td>
<td>0.128</td>
<td>−1.37</td>
<td>−52.46 to 50.02</td>
<td>0.958</td>
</tr>
<tr>
<td></td>
<td>Wales Reference</td>
<td>1.64</td>
<td>0.33 to 12.32</td>
<td>0.576</td>
<td>35.10</td>
<td>−31.49 to 102.06</td>
<td>0.302</td>
</tr>
<tr>
<td>Current smoking</td>
<td>No Reference</td>
<td>1.16</td>
<td>0.68 to 2.02</td>
<td>0.599</td>
<td>7.92</td>
<td>−15.29 to 31.47</td>
<td>0.506</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>1.23</td>
<td>0.85 to 1.79</td>
<td>0.273</td>
<td>−11.99</td>
<td>−28.22 to 4.12</td>
<td>0.014</td>
</tr>
<tr>
<td>Current alcohol consumption</td>
<td>No Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>1.23</td>
<td>0.85 to 1.79</td>
<td>0.273</td>
<td>−11.99</td>
<td>−28.22 to 4.12</td>
<td>0.014</td>
</tr>
<tr>
<td>Level of physical activity per day when not social distancing</td>
<td>Per 1 min increase</td>
<td>1.00</td>
<td>1.00 to 1.01</td>
<td><0.001</td>
<td>0.26</td>
<td>0.22 to 0.30</td>
<td><0.001</td>
</tr>
<tr>
<td>Number of chronic physical conditions</td>
<td>Per one-condition increase</td>
<td>0.96</td>
<td>0.87 to 1.06</td>
<td>0.427</td>
<td>−4.02</td>
<td>−8.66 to 0.05</td>
<td>0.053</td>
</tr>
<tr>
<td>Number of chronic psychiatric conditions</td>
<td>Per one-condition increase</td>
<td>0.82</td>
<td>0.67 to 1.00</td>
<td>0.052</td>
<td>−3.70</td>
<td>−12.69 to 5.03</td>
<td>0.414</td>
</tr>
<tr>
<td>Any physical symptom experienced during social distancing</td>
<td>No Reference</td>
<td>0.31</td>
<td>0.21 to 0.46</td>
<td><0.001</td>
<td>−25.53</td>
<td>−42.46 to −7.99</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of days of social distancing</td>
<td>Per 1-day increase</td>
<td>1.03</td>
<td>0.99 to 1.07</td>
<td>0.162</td>
<td>−0.18</td>
<td>−1.28 to 0.93</td>
<td>0.756</td>
</tr>
</tbody>
</table>

Participants were asked how much time in minutes they spend on an average day in moderate-to-vigorous physical activity when self-isolating. The WHO recommendations on physical activity levels per week (ie, at least 150 min of moderate physical activity and/or 75 min of vigorous physical activity in adults aged ≥18 years) were further used to distinguish participants with and those without sufficient physical activity per day (ie, approximately 21 min of moderate physical activity and/or 11 min of vigorous physical activity). Physical activity was also included in the analyses as a continuous variable and corresponded to the number of minutes of moderate-to-vigorous physical activity per day.

The association between defined factors (ie, sex, age, marital status, employment, annual household income, region, current smoking, current alcohol consumption, level of physical activity per day when not self-isolating, number of chronic physical conditions, number of chronic psychiatric conditions, any physical symptom experienced during social distancing and number of days of social distancing) and physical activity was studied using logistic (dichotomous physical activity variable) and linear regression (continuous physical activity variable) models.

All significant associations are reported in bold text.

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
Second, one of the key reasons that one may leave their home grounds during COVID-19 social distancing is to partake in one form of exercise daily for 60 min.

Interestingly higher levels of physical activity were observed in older adults and in women. These findings contradict the literature during non-pandemic times where the younger and men are observed to have higher levels of physical activity.

Findings must be interpreted in light of the study limitations. First, participants were asked to self-report their physical activity level and thus potentially introducing self-reporting bias into the findings. The present study did not report the domain of physical activity, only overall levels. However, social distancing legislation in the UK meant that individuals were not permitted to go to their place of work and the behaviour recorded would most likely be leisure time physical activity for which physical activity guidelines are based on. Finally, when comparing the present sample with recent UK population estimates, women (64.0% vs 50.6%) and adults aged 18–34 years (31.3% vs 19.7% (20–34 years in the comparison database, strictly speaking) are over-represented. Moreover, it is indeed known that online surveys may not yield generalisable, epidemiological samples, but given the nature of restrictions in place on personal contacts there are few options to collect this type of data.

The present findings suggest that during COVID-19, social distancing interventions should focus on increasing physical activity levels among younger adults, men and those with low annual household income. It should be noted in the present sample that women and younger adults are over-represented.

Author affiliations

1The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
2Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
3Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, United Kingdom
4Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
5Anglia Ruskin University, Cambridge, UK
6Department of Social and Preventive Medicine, Centre for Public Health, Medical University Vienna, Vienna, Austria
7Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Palermo, Italy
8School of Sport, Exercise and Rehabilitation, University of Technology, Sydney, New South Wales, Australia
9Faculty of Sport Science, University of Murcia, Murcia, Spain
10Department of Kinesiology, Iowa State University, Iowa, Missouri, USA
11Department of Special Surgery, University of Jordan, Amman, Jordan
12Northern Ireland Public Health Research Network, School of Health Sciences, Ulster University, Ulster, Ireland
13HSC R&D Division, Public Health Agency (Northern Ireland), Belfast, Ireland
14Institute of Mental Health Sciences, School of Health Sciences, Ulster University, Newtownabbey, Ireland

Contributors LS, MT, YB, and LB conceived the idea. LS, MT and LJ analysed and interpreted the data. LS drafted the manuscript. All authors critically revised the manuscript and approved the final draft before submission.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Obtained.

Ethics approval The study was approved by the Anglia Ruskin University Research Ethics Committee (16 March 2020).

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Lee Smith http://orcid.org/0000-0002-5340-9833
Guillermo F Lopez-Sanchez http://orcid.org/0000-0002-9897-5273

REFERENCES