Table 1 Characteristics of included studies | Author | | Country | Study
design | Study aim | Setting | Types of participants | Sample
size | Age
(y) | Sex | Clinical
tests | Criteria for positive testing | Reference
test | Criteria for positive reference standard | |---------------------|------|---------|--|---|---|---|-----------------------------|--------------|-------------------------|---|--|--|---| | Ayeni et al. | 2014 | Canada | prospective
cohort
study | to determine
the sensitivity
and specificity
of a maximal
Squat test for a
cam deformity | adult
outpatient
orthopaedic
clinic | adults with
hip pain, an
MRI/MRA of
the affected
hip and ability
to perform an
unassisted
maximal
squat | 78 hips | mean
38.3 | 37 males,
39 females | maximal
Squat | recreation of
typical hip
and groin
pain while
squatting | MRI /
MRA:
axial
oblique
sequences | cam: alpha
angle > 55°
and/or femoral
head-neck
offset < 9 mm | | Clohisy et al. | 2009 | USA | prospective
cohort
study | to describe
clinical history,
function and
physical
examination
findings
associated
with
symptomatic
FAI | not stated | patients with
confirmed
symptomatic
FAI (by X-
ray),
scheduled for
surgery | 51
patients ¹ | mean
35 | 29 males,
22 females | FABER log roll Stinchfield (=RSLR) FADIR (=AIT) posterior impingement test (PIT) | groin pain | X-ray:
a/p,
frog leg
lateral,
cross-
table
lateral | cam: aspherical femoral head, femoral head- neck offset < 9 mm pincer: acetabular retroversion, coxa profunda, coxa protrusio | | Maslowski
et al. | 2010 | USA | prospective
diagnostic
validity
study | to validate the diagnostic utility of hip provocation maneuvers to predict the presence of intra-articular hip pathology | multispecialty
musculoskelet
al clinic at a
university
medical center | subjects ≥ 18y, referred for injection with typical symptoms, physical examination findings and radiography suggesting intra-articular hip pain | 50 patients | mean
60 | 20 males,
30 females | Stinchfield
(=RSLR)
Scour
IROP | recreation of
typical hip
pain
recreation of
typical hip
pain
recreation of
hip pain
recreation of
hip pain | X-ray,
MRI, MRA | not stated | | Author | Year | Country | Study
design | Study aim | Setting | Types of participants | Sample
size | Age
(y) | Sex | Clinical
tests | Criteria for positive testing | Reference
test | Criteria for positive reference standard | |---------------------|------|-----------------|--------------------------------------|---|--|---|-----------------|------------|--|--------------------------------------|---|--|---| | Nogier et
al. | 2010 | France | prospective
multicenter
study | to assess the
prevalence of
dysplasia and
femoroacetabu
lar
impingement | four surgical
centers | mechanical
hip
pathology,
pain more
than 4
months | 241
patients | 16-50 | 292
participants,
62% males,
38%
females | flexion plus
internal
rotation | pain,
predominant
ly during
flexion/intern
al rotation | X-ray: a/p, Lequesne false profile, lateral axial (Ducro- quet or Dunn lateral view) | cam: femoral
head bump,
anterosuperior
neck flatness
or ovoid head
(on AP or
lateral axial
view)
pincer:
crossover sign
or acetabular
protrusion | | Philippon
et al. | 2007 | USA | prospective
cohort
study | to identify
subjective
complaints and
objective
findings in
patients
treated for FAI | patients
treated by a
senior surgeon | patients
treated for
FAI:
osteoplasty of
femoral neck
and / or
acetabular
rim trimming | 301
patients | mean
40 | 153 males,
148
females | FADIR
(=AIT)
FDT | hip pain any loss of distance between the lateral aspect of the knee and the examination table, compared to the unaffected hip | X-ray:
a/p,
cross-
table
lateral
view | cam: decreased offset of superior or anterior femoral head- neck junction pincer: coxa profunda, acetabular protrusion or retroversion, cross-over sign | | Ranawat et al. | 2017 | USA
New York | prospective
study | to evaluate the
Foot
Progression
Angle Walking
(FPAW) test as
a diagnostic
tool for FAI
and hip
instability | hospital | subjects with
hip pain | 199
patients | 18-65 | 85 males,
114
females | FADIR
(=AIT) | presence of
hip pain
during
testing or
exacerbation
of symptoms
if pain was
present at
baseline
not stated | X-ray:
a/p,
elongated
neck
lateral
view | cam or mixed
form: alpha
angle ≥ 60°,
pincer: center-
edge angle >
30° | | Ratzlaff et al. | 2015 | Canada | prospective
cohort
study, only | to estimate the prevalence and diagnostic | university | Caucasian
people with
FAI and pain | 143 hips | 20-49 | 510
Caucasian
participants, | FABER Internal rotation pain | not stated | X-ray:
a/p, | FAI: any one of 1) lateral center edge | | Author | Year | Country | Study
design | Study aim | Setting | Types of participants | Sample
size | Age
(y) | Sex | Clinical
tests | Criteria for positive testing | Reference
test | Criteria for positive reference standard | |--------------------|------|---------|--------------------------------|--|------------|---|-----------------|----------------------------|--------------------------|---|---|---------------------------|---| | | | | abstract,
no full text | accuracy of
physical exam
tests in | | | | | 35.7%
male,
64.3% | post
impingement
(PIT) | | bilateral
Dunn | angle (LCE) >
40°, 2) alpha
angle > 55° | | | | | | identifying
radiographic
FAI | | | | | female | f120 add IR
f90 add IR
(FADIR) | | | and 3) presence of a cross-over sign | | | | | | | | | | | | f90 add C | | | _ | | | | | | | | | | | | f120 add C | | | | | | | | | | | | | | | IR ROM <20
FLEX ROM
<115
IR ROM &
FABER
IR ROM &
f90 IR | | | | | Trindade
et al. | 2018 | USA | prospective
cohort
study | to determine if
the FABER
distance test
(FDT) was
associated
with the alpha
angle as
a diagnostic
tool for FAI | not stated | patients with symptomatic unilateral FAI who underwent hip arthroscopy. Patients were included if they had hip pain, alpha angle ≥ 50°, ≥ 18 years, prospectively documented FDT and alpha angle and complete physical exam | 603
patients | 18-
71,
36.4
mean | 344 males,
259 female | FDT | distance
from the
lateral
femoral
epicondyle
of the knee
to the
examination
table, with a
difference
between
sides
greater than
4 cm | X-ray:
Cross-
table | alpha angle ≥
78° | ¹ varying number of hips tested for each clinical test | Author | Year Country | Study
design | Study aim | Setting | Types of participants | Sample
size | Age
(y) | Sex | Clinical tests | Criteria for positive | Reference test | Criteria for positive | |--------|--------------|-----------------|-----------|---------|-----------------------|----------------|------------|-----|----------------|-----------------------|----------------|-----------------------| | | | | | | | | | | | testing | | reference | | | | | | | | | | | | | | standard | AIT: Anterior Impingement Test, add: Adduction, C: Compression, f90: Flexion 90°, f120: Flexion 120°, FABER: Flexion Abduction External Rotation, FADIR: Flexion Adduction Internal Rotation, FAI: Femoroacetabular Impingement, FDT: FABER Distance Test, FPAW: Foot Progression Angle Walking, IROP: Internal Rotation Over Pressure, IR: Internal Rotation, MRI: Magnetic Resonance Imaging, MRA: Magnetic Resonance Arthrography, PIT: Posterior Impingement Test, ROM: Range Of Motion, RSLR: Resisted Straight Leg Raise, X-ray: Radiography