Medical-attention injuries in community cricket: a systematic review

Geordie McLeod,1 Siobhán O’Connor,2 Damian Morgan,3 Alex Kountouris,4 Caroline F Finch,5 Lauren V Fortington1

ABSTRACT

Objectives The aim was to identify and describe outcomes from original published studies that present the number, nature, mechanism and severity of medically treated injuries sustained in community-level cricket.

Methods Nine databases were systematically searched to December 2019 using terms “cricket” and “injury”. Original, peer-reviewed studies reporting injury for at least one injury descriptor (body region, nature of injury and/or mechanism of injury) in community-level cricketers of all ages were included. Qualitative synthesis, critical appraisal and descriptive summary results are reported within the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.

Results Six studies were included: five reported hospital-treated data and one reported insurance claims data. Two had a low risk of bias. In hospital-based studies, fractures were the most frequent injury type. Upper and lower limb injuries (age ≥15 years) and injuries to the head (age <15 years) were the most common body region injured. Being struck by the ball was the most common mechanism for injury presenting to hospitals. Children were also commonly struck by equipment. One study using insurance claims data reported soft tissue injuries as the main of injury type.

Conclusion Hospital treatment data were most prominent, which emphasised injuries of a more serious nature or requiring acute care. These injuries were primarily fractures, dislocation/sprain and strains, bruising and open wounds with the majority resulting from players being struck by the ball. Research into whether properly fitted and maintained protective equipment, at an approved standard, is worn and is effective, is recommended.

INTRODUCTION

Cricket is a non-contact, bat and ball sport played mostly in Commonwealth countries. Injuries can occur in all activities of the game, for example when bowling, batting or fielding, and from a range of causes such as being hit by the cricket ball, falling when attempting to catch or overuse/repetitive strain, particularly in bowlers.1 Protective equipment is only worn by players in high-risk activities (batting, specialist fielding positions), including leg pads, gloves and helmets. Nevertheless, participation still carries a risk of injury and monitoring of injury occurrence remains an important element of promoting safety in the game.

During the 2017/2018 season, approximately 704,000 people,2 or around 3% of the Australia population, were engaged in competitions or club-based cricket across junior or senior levels, most of whom are considered to be community level players. Since 2002, the national body for cricket in Australia, Cricket Australia (CA), and affiliated State bodies have routinely monitored injuries in their elite players.3 Although the cohort of participants at community level is...
substantially greater, and therefore the total public health burden from injury potentially larger, there is no routine injury surveillance system available to monitor injuries in this player group. As shown in other sports, the injury profile in elite athletes is often very different to that seen in community participants.4

Hospitals, emergency departments (EDs), general practitioners (ie, family doctor), insurers and sports or allied health clinics are all possible sources of injury data for community sports injury.5 In Australia, hospital and ED datasets offer the most readily available data on sports injury because it is coded using the 10th edition of the Australian Modification to the International Classification of Diseases (ICD-10-AM). This classification includes specification of an activity code for external causes of injury, including specific activity (eg, cricket) for sports and leisure.

It is important to identify and understand the profile of community cricket injuries because it is through this process that we can begin to assess any discernible problem. Just as important is the fact that many injuries may be acute and interruptive of sport and/or work life. At the community level, participation is more likely to be driven by enjoyment, personal fitness and social factors.6 Injury may be a barrier to current and future participation, which may have flow on health effects.7 Return to physical activity postinjury has been shown to be influenced by the degree to which the injury may affect the participant’s work-life, and hence ability to derive income.8 An examination of medically treated injuries can be used to confirm what current information exists around injuries in community cricketers and who is seeking treatment, which may enable better targeted prevention strategies.9

The aim of this systematic review was to identify and describe outcomes from studies that present the number, nature, mechanism and severity of medically treated injuries sustained in community level cricket. The profile of these injuries is presented together with the quality of the data reporting.

METHODS
Protocol and registration
This systematic review was registered online through the International prospective register of systematic reviews (PROSPERO)10 record CRD42017079047 and is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.11

Search strategy
Nine databases were searched: CINAHL, MEDLINE and SPORTDiscuss (all through EBSCOHost), ScienceDirect, Web of Science, PubMed, Informit and Google Scholar. Reference lists of included articles were checked for additional studies of relevance and experts (CFF and AK) were consulted for knowledge of any additional studies not already captured. The search terms were “cricket*” AND “injur*” (and synonyms/derivatives) being present in the title, abstract or keywords of a paper. Variations to the search strings were used depending on the database. An example of a search description is shown in online supplementary table S1. The initial search was conducted by GM and included all community cricket injury papers published before the 30 September 2017. Updated searches were performed by GM in April 2018, November 2018 and December 2019 with additional relevant papers included (figure 1).

Eligibility criteria
Review of the full text identified studies that reported medical-attention data from community cricket over the past 30 years (1988–2018). The term of 30 years was considered appropriate to reflect the game and injuries that may exist in its present forms. Community cricket was defined as encompassing all organised cricket (indoor and outdoor), from junior development and club cricket up to and including premier level cricket in Australia (or its equivalent, ie, one level below state, provincial or county cricket), school cricket, including state and national representative school championships not managed by national or state cricketing bodies. Community cricket excluded high performance centres, or equivalents, where community level players may be training or playing temporarily under the auspices of higher cricketing bodies. Where the population/level of play was not presented or was unclear in the original
studies, we contacted the corresponding author for clarification.

All included studies were required to report data on the number of injuries and at least one of the following variables representing core items in sports injury surveillance:
1. Body region injured (eg, head, wrist)
2. Nature of the injury (eg, fracture, sprain, strain)
3. Mechanism of injury (eg, fall, hit by ball).

To enable the identification of the most frequently occurring injuries, and therein derive injury prevention priorities, studies which reported only on a specific type of injury (eg, stress fracture) or body part (eg, head) were excluded. Medical-attention studies that were excluded based on the above criteria are listed in online supplementary table S2. Case studies, editorials, reports, letters, books, reviews and conference proceedings were also excluded.

Study selection
After the initial search was completed, duplicates and false hits were removed, and two authors (GM and SOC) independently screened the titles and abstracts for eligibility. Publications were excluded only when both reviewers agreed that the title/abstract clearly confirmed the study was not relevant to the review aims. Where it was unclear, the full article was assessed. The full text of the remaining articles was examined independently by the same two authors for eligibility. Any disagreements regarding inclusion were resolved through discussion with a third author (LVF).

Critical appraisal/risk of bias
A self-developed, nine-item critical appraisal tool (table 1) was designed using elements of the Downs and Black tool and Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement. A specific item regarding injury definition and injury severity (item 5; table 1) was included as being pertinent to aims of this review in line with reporting under the current and previous cricket consensus statements. Although not formally validated, two authors (GM and SOC) tested the tool with a selection of similar (but not included) papers to ensure its relevance and applicability to the types of study designs included. Modifications and explanations to the tool were agreed on prior to its evaluation of articles for this review.

Risk of bias assessment was based on three of the items (2, 3 and 4) relating to selection, information and attrition biases. If each of these items was answered ‘yes’, then the study was considered to have a low likelihood of bias. If one of these items was considered to have only been partially satisfied, the study was considered to have an unclear likelihood of bias. Any ‘no’ response to these items resulted in the study being considered to have a high likelihood of bias. Studies were assessed independently by two authors (GM and SOC) and where agreement could not be reached then a third author (LVF) was consulted.

Data collection and data items
Two authors (GM and SOC) independently extracted data from the eligible articles on a custom data extraction form, which included study design, country, setting and context, aims, year and timeframe, ethics, overall participant numbers, age range, gender, levels of play, facets of play (eg, batting, bowling and/or fielding), participant recruitment, data collection methods, injury definition, injury severity measure/definition, number of injuries, exposure measures, incidence, prevalence, nature

| Table 1 Critical appraisal of studies |
|------------------|------------------|------------------|------------------|------------------|------------------|
| **Item** | **Study (first author and year)** | **Perera, 2019** | **Finch, 1998** | **Walker, 2010** | **King, 2018** | **Upadhyay, 2000** | **Forward, 1988** | **Overall % of yes** |
| **Likelihood of bias*** | Low | Low | Low | Unclear | Unclear | High | | |
| 1. Were the study aims and design described adequately and are they compatible? | Yes | Yes | Yes | Yes | Yes | Partial | | 83 |
| 2. Was the study setting, subjects, source, target population and size described adequately? | Yes | Yes | Yes | Yes | Partial | Partial | | 67 |
| 3. Was the method of data collection described adequately and did it seek to minimise information bias? | Yes | Yes | Yes | Partial | Yes | Partial | | 67 |
| 4. Has there been appropriate reporting of attrition of subjects or missing data? | Yes | Partial | Partial | Partial | Partial | Partial | | 17 |
| 5. Was there an injury definition and/or injury severity measure/definition provided and were they suitable for the study design? | Yes | Partial | Yes | Yes | Yes | Partial | | 67 |
| 6. Were the injury outcomes and exposure measures reported in a standardised, justified and reasonable manner? | Partial | Yes | Yes | Yes | Yes | Yes | Yes | 83 |
| 7. Were limitations to the study discussed adequately? | Yes | Yes | Yes | Yes | No | No | | 67 |
| 8. Is there a summary of key results, their potential generalisability and whether they and any conclusions match the aims and/or reflect the limitations of the study? | Yes | Yes | Yes | Yes | Yes | Partial | | 83 |
| 9. Does the study explain any ethics requirements, author conflicts of interest and/or funding arrangements? | Yes | Partial | Yes | Yes | No | No | | 50 |

*Items 2, 3 and 4 (shaded) used to assess the likelihood of bias.
Open access

(type), locations (body parts), mechanisms, severity, losses/dropouts, and number of injuries not defined. Any disagreement regarding study type, participant characteristics, measurement methods or main results was clarified by discussion with a third author (LVF).

Data synthesis/summary measures
To address the primary aim of this review and identify the number, nature, mechanism and severity of injuries in community cricket, a qualitative synthesis is presented, with tabular summaries. Further details are presented in combination, where appropriate, for the relevant summary outcomes: injury rates, prevalence/proportions, nature, body location, mechanism/setting and severity. To address the secondary aim of reporting quality, we summarised the completeness of reporting (n and %) for individual items of the critical appraisal tool to identify which areas are well addressed and which need improvement.

RESULTS
Over 1300 articles were identified from which 65 were relevant to community cricket injury (refer to figure 1). Six articles met all inclusion criteria and were retained for analysis.

Study characteristics
Table 2 summarises the characteristics and outcomes of included studies. Three studies were specific to cricket and two studies included cricket among other sports or injury reporting. Three of the studies were based in New Zealand (NZ) and two in Australia. Three studies used ED presentation data only, one used hospital admission data only, one used both ED presentation and admission data and one used insurance claims data. One study was specific to indoor cricket, while the remainder of the studies did not specify so outdoor and indoor are assumed combined.

Critical appraisal
(table 1)summarises the critical appraisal of the studies: two recorded a low likelihood of bias, two were unclear and one recorded a high likelihood of bias. The overall percentage of items addressed adequately (ie, recorded yes responses) for all studies was 65%. (n=35 of 54). Item 4 (reporting of attrition and missing data) was the most incompletely answered with all studies recording partial responses. Item 9 (ethics, author conflicts and funding) recorded 50% of yes answers. All other items recorded 67% or greater proportions of yes answers.

Injury incidence rates and prevalence
The injury rate for cricket-related hospitalisation in NZ from 2000 to 2005 was 2.3 per 100000 population per year, while for participation the injury rate for cricket-related hospitalisation was 39 per 100000 participants per year. In the same NZ hospital study, almost 1% of all cases were related to cricket injury. An NZ study looking at insurance claims over the 2012 to 2016 period reported 0.4% of the total claims (of the five sports investigated) were due to cricket-related injury. A study looking at ED presentations across Australia from 1989 to 1993 reported 3.7% of children under 15 years of age and 7.3% of all adults (defined as 15 years or older) presenting with sports injuries were cricket related. A study looking at hospital-attended cricket injuries in females in Victoria, Australia, from 2002/2003 to 2013/2014, reported an overall injury rate of 1.9 per 1000 participants, with an overall downward trend over that time period.

Nature of injury
Table 3 summarises the injury nature reported by the six studies. For ED presentations in NZ among children aged 9 to 13 years, fracture was the highest proportion of injuries recorded (43.3% of all cases) with both concussion/head injury and internal organ rupture as the equal second highest injury nature (13.3%). Of the Australian ED presentations from 1989 to 1993, for children under 15 years of age, bruising (30.2%) was the highest proportion of cricket-related injury type, with fractures (17.8%) and lacerations (17.8%) equal second. For adults (15 years or older), sprain and strain (combined) was the highest proportion of injury nature (26.0%), followed by fracture (20.7%) and bruising (19.6%). Fractures were also the most common injury nature for females in Victoria, Australia, for hospital admissions (47.1%), while dislocation, strain, and sprain were more common in ED presentations (36.4%). For indoor cricket injuries seen at ED, fracture was the highest proportion of injury nature (34.3%) followed by sprain (15.6%) and dislocation (10.9%). Fracture was the most common injury nature in hospital admissions in NZ (43.8%) with sprain (15.2%) and avulsion/dislocation (6.2%) as the next two highest injury nature proportions. For cricket injuries resulting in insurance claims in NZ, soft tissue injury was the highest reported injury nature (64.0%) followed by fractures (30.9%).

Body regions injured
Table 4 summarises the body regions of injury in the six studies. With the exception of children aged under 15 years presenting to Australian EDs, the upper limb was the body region with the highest proportion of injury, ranging from 33% to 47%. The lower limb injury proportion ranged from 16% to 35%. The proportion of head injury was highest in children under 15 years presenting to Australian EDs at 44% and 27% for ED presentations in NZ. For older age groups presenting to EDs or admitted to hospital, head injury ranged from 17% to 23%. Twenty-eight per cent of females of all ages required hospital treatment for head/face/neck injuries in Victoria, Australia. For injuries resulting in moderate to serious or serious insurance claims in NZ, head injuries represented 7% of the cases. Trunk and back injuries ranged from 2% to 13% across all studies.
Table 2
Study characteristics and injury outcomes from five original studies of medical-attention injuries in community cricket (n=6)

<table>
<thead>
<tr>
<th>First author, year (reference)</th>
<th>Setting/context and aims</th>
<th>Overall participants (n)</th>
<th>Injury data collection methods</th>
<th>EM, incidence/prevailence</th>
<th>Nature of injuries</th>
<th>Body region/part injured</th>
<th>Mechanism of injuries</th>
<th>Severity of injuries</th>
<th>Other information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peera, 201917</td>
<td>A comprehensive profile of hospital-treated cricket injuries sustained by female cricketers in Victoria, Australia, from 2003/2003 to 2013/2014. n=668 cases overall with 547 ED presentations and 121 HA. All females aged 5 years or more. Top three age groups for HA: 20–24: 19.0%, 10–14: 16.5%, 30–34: 10.7%. Top three age groups for ED: 10–14: 19.9%, 15–19: 15.7%, 20–25: 13.3%. Data sourced from Victorian Injury Surveillance Unit which collects ED data under the Victorian Emergency Minimum Dataset and HA data under the Victorian Admitted Episode Dataset.</td>
<td>Per 1000 participants Overall: 1.9 (5% CI 0.8 to 4.5) HA: Fractures=57 (47.1%), Dislocation, sprain and strain=22 (18.2%), Injury to muscle and tendon=6 (6.5%), Superficial injury=6 (5.0%), Other unspecified=28 (23.1%), ED: Dislocation, sprain and strain=199 (26.4%), fractures=12 (17.2%), Superficial injury=80 (14.6%), Open wound=64 (14.8%), Tendon injury and tear=68 (13.9%), Eye injury - excluding foreign body=26 (9.2%), Intracranial injury=32 (10.9%), Other unspecified=56 (16.4%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>King, 201817</td>
<td>Provide retrospective analysis of moderate to serious injury and serious injury claims and related costs for five sporting codes using national insurance claims (ACC) in New Zealand from 2012 to 2016. n=853 to 324 claims from which 547 ED presentations and 121 HA. All females aged 5 years or more. Top three age groups for HA: 20–24: 19.0%, 10–14: 16.5%, 30–34: 10.7%. Top three age groups for ED: 10–14: 19.9%, 15–19: 15.7%, 20–25: 13.3%. Data sourced from ACC for 5 years from 2012 to 2016.</td>
<td>Per 1000 participants Overall: 1.9 (5% CI 0.8 to 4.5) HA: Fractures=57 (47.1%), Dislocation, sprain and strain=22 (18.2%), Injury to muscle and tendon=6 (6.5%), Superficial injury=6 (5.0%), Other unspecified=28 (23.1%), ED: Dislocation, sprain and strain=199 (26.4%), fractures=12 (17.2%), Superficial injury=80 (14.6%), Open wound=64 (14.8%), Tendon injury and tear=68 (13.9%), Eye injury - excluding foreign body=26 (9.2%), Intracranial injury=32 (10.9%), Other unspecified=56 (16.4%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walker, 201817</td>
<td>Hospitalisation of cricket players in NZ from 2000 to 2005 inclusive. Identify the epidemiology of injury resulting in hospitalisation, agents and mechanisms (products and activities) associated with injury and evidence of assistance to those developing activity-specific PPE. n=498 cases Age range=2–80 years 0–9: 9%, 10–19: 28%, 20–29: 23%, 30–39: 21%, 40–49: 12%, 50–59: 4%, 60+: 3%. Sex: M=286, F=202. Moderate to serious injuries related: moderate to serious injury claims=3072, serious injury claims=15.</td>
<td>Per 1000 participants Overall: 1.9 (5% CI 0.8 to 4.5) HA: Fractures=57 (47.1%), Dislocation, sprain and strain=22 (18.2%), Injury to muscle and tendon=6 (6.5%), Superficial injury=6 (5.0%), Other unspecified=28 (23.1%), ED: Dislocation, sprain and strain=199 (26.4%), fractures=12 (17.2%), Superficial injury=80 (14.6%), Open wound=64 (14.8%), Tendon injury and tear=68 (13.9%), Eye injury - excluding foreign body=26 (9.2%), Intracranial injury=32 (10.9%), Other unspecified=56 (16.4%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. NIHR: National Institute for Health Research.
2. AM: Admitted Episode.
4. ED: Emergency Department.
5. HA: Hospital Admission.
6. PPE: Personal Protective Equipment.
7. ICISS: Injury Classification and International Statistical Classification System.
10. F: Female.
11. CR: Claim Rate.
12. CI: Confidence Interval.
13. CR: Claim Rate.
14. CI: Confidence Interval.
15. CR: Claim Rate.
16. CI: Confidence Interval.
17. CR: Claim Rate.
18. CI: Confidence Interval.
19. CR: Claim Rate.
20. CI: Confidence Interval.
21. CR: Claim Rate.
22. CI: Confidence Interval.
23. CR: Claim Rate.
24. CI: Confidence Interval.
25. CR: Claim Rate.
26. CI: Confidence Interval.
27. CR: Claim Rate.
28. CI: Confidence Interval.
29. CR: Claim Rate.
30. CI: Confidence Interval.
31. CR: Claim Rate.
32. CI: Confidence Interval.
33. CR: Claim Rate.
34. CI: Confidence Interval.
35. CR: Claim Rate.
36. CI: Confidence Interval.
37. CR: Claim Rate.
38. CI: Confidence Interval.
39. CR: Claim Rate.
40. CI: Confidence Interval.
41. CR: Claim Rate.
42. CI: Confidence Interval.
43. CR: Claim Rate.
44. CI: Confidence Interval.
45. CR: Claim Rate.
46. CI: Confidence Interval.
47. CR: Claim Rate.
48. CI: Confidence Interval.
49. CR: Claim Rate.
50. CI: Confidence Interval.
51. CR: Claim Rate.
52. CI: Confidence Interval.
53. CR: Claim Rate.
54. CI: Confidence Interval.
55. CR: Claim Rate.
56. CI: Confidence Interval.
57. CR: Claim Rate.
58. CI: Confidence Interval.
59. CR: Claim Rate.
60. CI: Confidence Interval.
61. CR: Claim Rate.
62. CI: Confidence Interval.
63. CR: Claim Rate.
64. CI: Confidence Interval.
65. CR: Claim Rate.
66. CI: Confidence Interval.
67. CR: Claim Rate.
68. CI: Confidence Interval.
69. CR: Claim Rate.
70. CI: Confidence Interval.
71. CR: Claim Rate.
72. CI: Confidence Interval.
73. CR: Claim Rate.
74. CI: Confidence Interval.
75. CR: Claim Rate.
76. CI: Confidence Interval.
77. CR: Claim Rate.
78. CI: Confidence Interval.
79. CR: Claim Rate.
80. CI: Confidence Interval.
81. CR: Claim Rate.
82. CI: Confidence Interval.
83. CR: Claim Rate.
84. CI: Confidence Interval.
85. CR: Claim Rate.
86. CI: Confidence Interval.
87. CR: Claim Rate.
88. CI: Confidence Interval.
89. CR: Claim Rate.
90. CI: Confidence Interval.
91. CR: Claim Rate.
92. CI: Confidence Interval.
93. CR: Claim Rate.
94. CI: Confidence Interval.
95. CR: Claim Rate.
96. CI: Confidence Interval.
97. CR: Claim Rate.
98. CI: Confidence Interval.
99. CR: Claim Rate.
100. CI: Confidence Interval.
101. CR: Claim Rate.
102. CI: Confidence Interval.
103. CR: Claim Rate.
104. CI: Confidence Interval.
105. CR: Claim Rate.
106. CI: Confidence Interval.
<table>
<thead>
<tr>
<th>First author, year (reference)</th>
<th>Setting/context and aims</th>
<th>Overall participants (n), age, sex</th>
<th>Injury data collection methods</th>
<th>Injury definition, SM</th>
<th>No of injured (n) and injuries (n)</th>
<th>EM, incidence/prevalence</th>
<th>Nature of injuries</th>
<th>Body region/part injured</th>
<th>Mechanism of injuries</th>
<th>Severity of injuries</th>
<th>Other information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upadhyay, 2000</td>
<td>Emergency presentations to Starship Children’s Hospital Auckland, NZ.</td>
<td>n=60 cases Age range 9–13 years Sex NR</td>
<td>Retrospective review of existing data</td>
<td>Injury secondary to playing cricket under ICD code E-8897 SM=N</td>
<td>n=60</td>
<td>EM=N</td>
<td>Fracture: 26 (43.3%)</td>
<td>Head/face and neck: 16 (26.7%)</td>
<td>Hit by ball: 21 (35.6%)</td>
<td>Two injuries were severe, both blunt abdominal trauma, 19 cases (31.6%) required operative procedures.</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Finch, 1998</td>
<td>ED presentations of sports injuries in selected parts of Australia for the period 1989–1993</td>
<td>n=516221 attendees to NISU EDs 51 203 <15 years old (children) 46 837 ≥15 years old (adults)</td>
<td>Data collected from 74 public hospitals and medical centres on standardised collection forms throughout Australia</td>
<td>NR SM=N</td>
<td>np=64</td>
<td>ni=65</td>
<td>Fractures: 19–22 (includes three bruised or fractured ribs)</td>
<td>Head and neck: 14—eye injuries 6 (43%), supraorbital ridge 4 (29%), nasal bone 3 (21%)</td>
<td>Batter most often struck on fingers by ball</td>
<td>Batter most often struck on fingers by ball</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Forward, 1988</td>
<td>Review indoor cricket injuries presenting to ED of Royal Perth Hospital, Australia, over a 6-month period. (Published in 1988—no reference to dates investigated.)</td>
<td>n=64 cases 19–34 years Sex: M=50, F=14</td>
<td>Recording of all indoor cricket injuries presenting in ED</td>
<td>NR SM=N</td>
<td>n=64</td>
<td>ni=65</td>
<td>Fractures: 19–22 (includes three bruised or fractured ribs) Grade I/II liga ment strains: 10 Eye-specific damage: 6 Dislocations: 5 Bruising: 2–5 (includes three bruised or fractured ribs) Friction burns (infected): 4 Lacerations: 4 Avulsions: 2 Concussion: 1 Other: 7</td>
<td>Head and neck: 14—eye injuries 6 (43%), supraorbital ridge 4 (29%), nasal bone 3 (21%)</td>
<td>Batter most often struck on fingers by ball</td>
<td>Batter most often struck on fingers by ball</td>
<td>No time off work: 19% <1 week off: 19% 1 week—1 month: 19% >1 month: 11% Not known: 32%</td>
</tr>
<tr>
<td>First author, year (reference)</td>
<td>No of injuries</td>
<td>Age range</td>
<td>Concussion/ closed head injury or seizure</td>
<td>Superficial injury</td>
<td>Eye injury</td>
<td>Fracture</td>
<td>Avulsion / dislocation</td>
<td>Internal organ injury</td>
<td>Open wound/ laceration</td>
<td>Soft tissue</td>
<td>Sprain</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>Peera, 2019 (20)</td>
<td>HA: 121</td>
<td>5-45+ years</td>
<td>–</td>
<td>5.0%</td>
<td>–</td>
<td>47.1%</td>
<td>† 6.6%</td>
<td>–</td>
<td>–</td>
<td>18.2%†</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>ED: 547</td>
<td>5-45+ years</td>
<td>1.6%</td>
<td>14.6%</td>
<td>2.9%</td>
<td>17.2%‡</td>
<td>† 6.9%</td>
<td>–</td>
<td>8.4%</td>
<td>36.4%†</td>
<td>–</td>
</tr>
<tr>
<td>King, 2018 (17)</td>
<td>3087**</td>
<td>0-85+ years</td>
<td>1.7%</td>
<td>–</td>
<td>–</td>
<td>30.9%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1.9%</td>
<td>64.1%</td>
</tr>
<tr>
<td>Walker, 2010 (19)</td>
<td>HA: 498</td>
<td>2-80 years</td>
<td>5.0%‡</td>
<td>–</td>
<td>–</td>
<td>43.8%</td>
<td>6.2%</td>
<td>3.6%</td>
<td>2.4%</td>
<td>15.2%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Upadhyay, 2000 (18)</td>
<td>60</td>
<td>9-13 years</td>
<td>13.3%</td>
<td>–</td>
<td>43.3%</td>
<td>–</td>
<td>13.3%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Finch, 1998 (20)</td>
<td>2345</td>
<td><15 years</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>17.8%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>17.8%</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>3846</td>
<td>≥15 years</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>20.7%</td>
<td>–</td>
<td>–</td>
<td>11.2%</td>
<td>26.0%§</td>
<td>19.6%</td>
</tr>
<tr>
<td>Forward, 1988 (21)</td>
<td>65</td>
<td>19-34 years</td>
<td>1.5%‡</td>
<td>9.2%</td>
<td>33.8%¶</td>
<td>10.8%</td>
<td>–</td>
<td>6.2%</td>
<td>15.4%</td>
<td>6.2%</td>
<td>–</td>
</tr>
</tbody>
</table>

*Includes pain and swelling.†Dislocation, sprain and strain were combined.‡Includes 2.2% seizures.§Sprain and strain combined.¶Includes bruised ribs as three cases were classified as bruised or fractured.

ED, emergency department presentations; HA, hospital admission; NR, not reported.
Specific body parts injured were provided in three hospital-based studies. Of the upper limb injuries admitted to hospital in NZ, almost two-thirds (62%) were to the fingers. Thirty-two per cent of the lower limb injuries were to the Achilles tendon. Of the indoor cricket injuries presenting to EDs in Australia from 1989 to 1993, 50% of the head injuries were to the nasal bone or the bony region above the eye (supraorbital ridge) and 43% were to the eye itself. Thirty-seven per cent of upper limb injuries were to the fingers (proximal phalanx) and the ankle and knee each made up 28% of the lower limb injuries. Of the hospital-attended injuries in females in Victoria, Australia, the wrist and hand made up the majority of upper limb injuries in ED presentations (29%) and hospital admissions (17%), with the knee being the most common injured region of the lower limb in ED presentations (12%) and admissions (22%). Of the wicket-keepers injured in indoor cricket, 71% were eye injuries due to being struck by the ball. The study of NZ insurance claims reported that of the moderate to serious claims (n=3072) for the head/neck/face region, 31% of the claims were to the head, with 25% specifically to the nose and 25% to other facial areas. For the upper limb, 41% of the claims were to the finger/thumb, 32% to the shoulder and 15% to the wrist/hand. For the lower limb, the majority of claims were for the knee (51%) and ankle (26%). In the trunk/back region, the chest (44%) was the most common claim, with back/spine (26%) and abdomen/pelvis (25%) at similar levels. For serious claims (n=27), 56% were to the head and 44% to the hip, upper leg and thigh.

Mechanism of injury

Table 5 summarises the broad mechanisms of injury reported by four studies. Being struck by the ball was consistently the highest proportion of mechanism reported, varying from 31.4% to 98.4%. Being struck by the bat or equipment was relatively high in the ED presentations for children (23.3%) when compared with the hospital admission proportion of 7.2% for a broader age group (2 to 80 years); however in the same study, it was reported that for children under 10 years the proportion was 72%. An Australian study looking at female cricket injuries reported higher proportions of ED presentations compared with hospital admissions for being struck by the ball or bat. An earlier Australian study on ED presentations noted that head and facial injuries in children (<15 years) were generally associated

Table 4 Percentage of body regions for medical-attention injuries in community cricket

<table>
<thead>
<tr>
<th>First author, year (reference)</th>
<th>No of injuries</th>
<th>Head/face/neck</th>
<th>Upper limb</th>
<th>Trunk/back</th>
<th>Lower limb</th>
<th>Unspecified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perera, 2019[^22]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA</td>
<td>121</td>
<td>28.1</td>
<td>33.9</td>
<td>–</td>
<td>28.1</td>
<td>9.9</td>
</tr>
<tr>
<td>ED</td>
<td>547</td>
<td>27.8</td>
<td>38.9</td>
<td>1.1</td>
<td>26.1</td>
<td>6.1</td>
</tr>
<tr>
<td>King, 2018[^17]</td>
<td>3087[^2]</td>
<td>7.4</td>
<td>35.2</td>
<td>2.3</td>
<td>45.5</td>
<td>9.6</td>
</tr>
<tr>
<td>Walker, 2010[^19]</td>
<td>498</td>
<td>22.9</td>
<td>35.7</td>
<td>2.8</td>
<td>31.3</td>
<td>7.3</td>
</tr>
<tr>
<td>Upadhyay, 2000[^18]</td>
<td>60</td>
<td>26.7</td>
<td>30.0</td>
<td>13.3</td>
<td>NR</td>
<td>30.0</td>
</tr>
<tr>
<td>Finch, 1998[^20]</td>
<td>Ages <15 years</td>
<td>2345</td>
<td>44.2</td>
<td>33.9</td>
<td>3.2</td>
<td>15.5</td>
</tr>
<tr>
<td>Ages ≥15 years</td>
<td>3846</td>
<td>16.6</td>
<td>32.6</td>
<td>4.2</td>
<td>22.8</td>
<td>11.5</td>
</tr>
<tr>
<td>Forward, 1988[^21]</td>
<td>65</td>
<td>21.5</td>
<td>46.2</td>
<td>4.6</td>
<td>27.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

[^2]: Number of claims (there were no ‘multiple locations’ injuries reported).

[^22]: ED, emergency department presentations; HA, hospital admissions; NR, not reported.

Table 5 Broad mechanism of injury as a percentage of all medical-attention injuries in community cricket

<table>
<thead>
<tr>
<th>First author, year (reference)</th>
<th>No of injuries</th>
<th>Struck by ball</th>
<th>Struck by bat or equipment</th>
<th>Non-specific overexertion</th>
<th>Non-specific falls</th>
<th>Player collision</th>
<th>Other/NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perera, 2019[^22]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA</td>
<td>121</td>
<td>44.6[^*]</td>
<td>12.4</td>
<td>27.3</td>
<td>–</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>547</td>
<td>63.8[^*]</td>
<td>–</td>
<td>19.0</td>
<td>–</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>Upadhyay, 2000[^18]</td>
<td>60</td>
<td>51.7</td>
<td>23.3</td>
<td>–</td>
<td>20.0</td>
<td>5.0</td>
<td>–</td>
</tr>
<tr>
<td>Forward, 1988[^21]</td>
<td>65</td>
<td>98.4</td>
<td>1.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

[^*]: Struck by ball or bat combined.

[^22]: ED, emergency department presentations; HA, hospital admissions; NR, not reported.
with being hit by the ball or bat, though numerical data were not available.20 Non-specific fall and player collisions were similar across ED presentations and hospital admissions for the two NZ studies despite the age range differences.18,19

Position of play when injured

One study, for indoor cricket, provided information on injuries with regard to the position of play for the injured player, with injuries occurred mainly in fielding (72\%) and then batting (17\%).21

Injury severity

One study identified 21.5\% of hospitalised cricket-related injuries to females in Victoria, Australia, required a bed stay of two or more days.22 One study identified that 4\% (n=20) of cricket-related hospital admissions were classified as serious non-fatal injuries on the International Classification Injury Severity Score (ICISS) scale. Of these, 11 were due to being struck by the ball, 6 due to collisions with other players, 2 from falls and 1 from over-exertion.19 For children (aged 9–13 years) presenting to ED in NZ, 30\% did not require hospital admission and 32\% required operative procedures. Two children had abdominal trauma injuries that were classified as severe. The median range for days of stay in hospital for the operative cases among the children was 1 to 2.5 days.18

The severity of injuries from indoor cricket presentations to ED in Australia was measured by time off work. Equal proportions of cases required no time off work (19\%), less than 1 week off work (19\%) and between 1 week and 1 month off work (19\%). Eleven per cent of cases required greater than 1 month off work.21 For the study that investigated moderate to serious and serious injury claims for cricket-related insurance claims in NZ, 0.5\% (n=15) of claims were serious. Although not reported specifically for cricket, minor injuries accounted for 93\% of all claims.

DISCUSSION

Main findings

Data items for improved reporting

Successful injury prevention strategies should be informed by high-quality injury data. Medical-attention injuries were chosen as the focus of this review because they are costly to the public health system23 (and individuals) and because the diagnosis from a medical professional is considered to provide more accurate results than self-report data.24,25 For medical-attention community cricket injuries, we identified six studies that reported epidemiological data inclusive of all body parts/injury types. Only two studies were considered to have a low likelihood of bias, meaning that the reported results could be subject to selection and information biases.26 Two key areas are highlighted for inclusion in future original research studies: item 4 (missing data and subject attrition) and item 9 (reporting of ethical standards, conflicts of interest and funding). A further four items were only moderately well addressed and should be considered for improved reporting: item 7 (study limitations), item 5 (injury definition), item 3 (description of data collection method) and item 2 (study setting).

High prevalence of fractures and head injuries

As might be expected from the data sources, the types of injuries that were treated in hospitals/EDs were primarily fractures. Cricket is a projectile sport and it is likely that many of the fractures were due to being struck by the ball and or equipment, as has been reported in a prospective cohort study of junior players in Australia.27 Falls are another common mechanism that can lead to fracture. For injuries requiring hospital treatment, the head/face/neck was the second most common injured body region behind the upper limb. An interesting observation from the hospital data was that the overall proportions of head/face/neck cases seen in females, in Victoria, Australia, from 2002 to 2012 were similar to those reported for both sexes (but would be predominantly male) throughout Australia from 1989 to 1993.28,29 Although difficult to compare directly between the studies, it might suggest a possible issue with helmet use. Given that helmets have been shown to be protective, specifically at junior levels in cricket,28 and anecdotally against fatalities,29 we might expect to see a comparatively lower proportion in the more recent study, especially as the data used were largely from the period in which the wearing of helmets was generally mandatory for players under the age of 18 years. There may be other factors involved in the comparable proportion of head/face/neck face injuries. Other factors include improper fitting of helmets, lax regulation of wearing protective equipment, especially at training, or the injuries occurring in other aspects of the game such as in the field, where protective equipment is not normally mandated.

Another recent study based on insurance claims data from NZ reported lower proportions of head/neck face injuries than the Australian hospital data and other earlier studies.17 The relatively low proportion of head/neck face injuries in the insurance claim data is possibly reflective of the nature of injuries recorded in this dataset (being a no-fault claims system), rather than a clear reduction in the proportion of cases (when compared with the hospital data from earlier timeframes). Regardless of the reason for the change, 50\% of these injuries were to the face. Investigation of the mechanisms for these injuries, including the use of appropriate personal protection (such as a helmet with face guard for batters/wicket-keepers and protective glasses for wicket-keepers), is needed.

Injuries over time

Besides the number and types of injuries sustained, the temporal patterns and incidence rates need to be understood. Looking at injury over time enables practitioners to identify when, what and in whom cases are increasing or decreasing, therein supporting the decisions required.
on prevention measures. One of the difficulties in presenting injury incidence rates, and possibly why only two studies,\(^1\)\(^2\) reported these, is the requirement for an accurate denominator (risk exposure). Cricket is a sport with several, separate activities (batting, bowling and fielding) which further complicates accurate collection of exposure data. Although guidance for this data collection is presented in the consensus statements,\(^25\)\(^30\) this guidance is best suited to the elite levels of the game. Improving the consistency of injury surveillance including exposure to injury risk at a community level requires a targeted and tailored approach within those settings.\(^6\)

Limitations

The type and consistency of data extracted from the articles in this review limited our ability to conduct any quantitative analysis. Due to the majority of the studies within this review being outdated, it is difficult to provide unequivocal recommendations from the data reported.

While hospital data can be a useful, routinely collected, source of acute injury data, reliance on it understimates the overall prevalence of cricket injuries as it is likely that many will not require hospital treatment. Earlier research has reported that up to 50% of adults with a sports injury seek treatment by a community-based practitioner, including family doctors, physiotherapists or sports medicine specialists.\(^31\)\(^32\) While not included in this review due to the lack of detailed epidemiological data, two studies were identified in which the proportion of injury by sport was noted for a sports medicine clinic (wherein 3% of 6479 cases and 4% of 1682 cases in consecutive years were cricket related)\(^33\) and a general practice (5% of 78 were cricket related).\(^34\) The level of organisation (eg, formal or recreational) in which the cricket was played when the injury occurred is also often not known with any accuracy, which can hamper specific advice for injury prevention policy.

In addition to limitations of the included studies, there were also limitations of the review process itself that need to be considered in understanding the results. The search strategy was deliberately broad to identify all original cricket-related studies, including reference searches and knowledge from two authors with extensive cricket research backgrounds. However, it is still possible that large studies reporting on all types of sports or other injuries could have reported on cricket, within a subgroup analysis (as similar to those that were identified).

The tool used for critical appraisal of the included studies was self-developed, based on the Downs and Black tool\(^13\) and STROBE statement,\(^14\) with reference to bias assessment from Hoy et al\(^16\) and the Cochrane Collaboration.\(^17\) While not formally validated, the items were agreed by the author team to be the minimum data for reporting and interpreting injury data in line with the study aim. It is, however, possible that the tool may overestimate or underestimate the quality of the studies reviewed.

CONCLUSIONS

From studies of medical-attention injuries in community cricket, fractures, bruising and open wounds/lacerations were identified as relatively more common than other injury types. The majority of these injuries were likely sustained by players being struck by the ball. However, the evidence on which these findings are based is largely outdated and biased toward hospital-treated cases. Head/neck and face injuries were relatively common, suggesting that further investigations of their injury mechanism and the use of appropriate personal protective equipment are needed.

REFERENCES

6 Finch CF. Injury data collection in lower leagues needs to be targeted specifically to those settings. *Science and Medicine in Football* 2017;1:89–90.

