


resistance training (RT) is an effective intervention that
may obviate the requirement for injection or surgery.
The evidence for RT in musculoskeletal rehabilitation9

demonstrates greater effectiveness than aerobic, coordin-
ation, mobilisation or Pilates training.10 11

Compensatory motor patterns have been associated
with chronic LBP during completion of sit to stand
tasks.12 It is recommended that treatments seek to
restore normal kinetic and kinematic characteristics. It
has also been demonstrated that individuals with LBP
and greater pain-related fear change movement patterns
in an effort to reduce lumbar spine motion during some
tasks.13 While the use of RT may alter the fear-related
aspects of LBP,14 limited support has been presented for
the ability of rehabilitation interventions to change
movement patterns.15 No research into the effects of
free weight RT on biomechanics in those with LBP
could be found.
It is common for those with LBP to undergo plain

X-ray imaging, CT or MRI to delineate anatomical path-
ology.16 MRI provides accurate imaging of disk and
neural tissue, bony stress and other soft tissue, in par-
ticular, muscle. Higher levels of MRI-defined lumbar fat
infiltration and smaller paraspinal cross-sectional areas
have been observed in those with LBP.17–20 This muscu-
lar atrophy occurs through a number of different cellu-
lar and molecular pathways and can be caused by
inactivity.21 Willemink et al22 published the sole study
examining alterations in MRI defined lumbar fat infiltra-
tion following training. No significant muscle structure
changes were seen.
The use of free weight exercises is commonplace in

the training of athletes and is considered effective in
increasing strength, altering muscle structure and
improving motor control.23 Despite deficiencies in these
areas having been linked to LBP,12 24 the use of free
weight RT in the rehabilitation of those with LBP is
limited. It is known that RT can alter muscle compos-
ition and illicit high levels of lumbar erector and other
posterior chain muscle activity.25 26 However, it is
unknown what effect a free weight RT intervention has
on MRI defined lumbar fat infiltration, biomechanics
and pain in those presenting with LBP.
The aim of the current study is to investigate the

effects of a free weight-based progressive RT intervention
on pain, disability, quality of life, MRI-defined lumbar
fat infiltration and functional cross-sectional area
(FCSA), squat biomechanics and strength in those with
chronic LBP.

METHODS
Participants
Participants had presented with LBP to one of six sports
physicians at a large sports medicine practice. All partici-
pants underwent clinical history and examination by a
sports physician including MRI examination. The symp-
toms had been present for greater than 3 months, with

or without radicular pain. Exclusion criteria were: previ-
ous spinal surgery, tumours, nerve root entrapment
accompanied by neurological deficit, spinal infection,
inflammatory disease of the spine and other disorders
preventing active rehabilitation. Those who met the
inclusion criteria were informed of the study, given an
information leaflet and offered the opportunity to ask
questions of the lead researcher. All participants com-
pleted and signed an informed consent form prior to
partaking; the study met the approval of the Sports
Surgery Clinic Hospital Ethics committee (25-EF-008).
Thirty participants, 11 females (age=39.6±12.4 years,

height=164 cm±5.3 cm, body mass=70.9±8.2 kg,) and 19
males (age=39.7±9.7 years, height=179±5.9 cm, body
mass=86.6±15.9 kg,) between the ages of 16 and 60 were
recruited. There were four dropouts due to: an unre-
lated ankle injury (n=1), not attending all testing ses-
sions (n=1), work commitments (n=1) and a lack of
adherence to the programme (n=1).

Procedures
On entering the laboratory, participants were asked to
fill out disability, pain, activity level and quality of life
questionnaires; the Oswestry Disability Index (ODI);
Visual Analogue Scale (VAS); a Godin-Shepherd
Leisure-time Questionnaire and a Euro-QOL-5D V.2
(Euro-Qol) questionnaire were used, respectively. A flow
chart of the testing, questionnaires and training can be
seen in online supplementary content 1 and 2. An
8-camera motion analysis system (Bonita B10, Vicon,
UK), synchronised with two 40×60 cm force platforms
(BP400600, AMTI, USA) was used to collect kinematic
and kinetic data for all tests. Data were sampled at
200 Hz and the Vicon Plug-in-Gait marker set was used
as per Marshall et al.27

Ankle, knee, hip, pelvis and thorax angles and
internal joint moments at the hip knee and ankle were
calculated throughout the movement in all three planes.
Angles were normalised to a standing static trial.28 A
continuous waveform analysis, Analysis of Characterising
Phases,29 was conducted to examine differences between
the measurements. Before performing ACP, waveforms
were landmark registered to the start of the concentric
phase. This was done to remove temporal variations in
the start of the concentric phase30 between the partici-
pants. Subsequently, ACP was applied to generate partici-
pant scores to describe a participant’s behaviour over
key phases (phases of variation). Participant scores were
tested for significant differences using an analysis of vari-
ance (ANOVA). If participant scores differed within a
key phases, phases were extended to discover the full
phase of significant difference.29

Biering-Sorensen test protocol
A Biering-Sorensen (BS) test was used to measure back
extension endurance.31 The patient lay on the examin-
ing table in the prone position with the upper edge of
the iliac crests aligned with the edge of the table. The

2 Welch N, et al. BMJ Open Sport Exerc Med 2015;1:000050. doi:10.1136/bmjsem-2015-000050

Open Access
by copyright.

 on O
ctober 13, 2019 by guest. P

rotected
http://bm

jopensem
.bm

j.com
/

B
M

J O
pen S

port E
xerc M

ed: first published as 10.1136/bm
jsem

-2015-000050 on 9 N
ovem

ber 2015. D
ow

nloaded from
 



lower body was fixed to the table by two straps, located
around the pelvis and mid-calf. With the arms folded
across the chest, the patient was asked to isometrically
maintain the upper body in a horizontal position (see
online supplementary content 3). The time during
which the patient kept the upper body straight and hori-
zontal was recorded.

Isometric mid-thigh pull strength test protocol
Isometric mid-thigh pull (IMTP) tests were completed
using a custom set up with the laboratory force plates
(Fit-tech, Australia, see online supplementary content 4).
Testing protocol can be seen in online supplementary
content 2. The IMTP was not included in the first
testing session as a maximum isometric strength test was
deemed inappropriate in an initial testing battery for
those with LBP. To calculate maximum force, vertical
ground reaction force (vGRF) data from both force
plates were summed before the maximal vGRF was
identified. This measure was then normalised to body
weight (N/kg).

MRI protocol
Lumbar spine MRIs were obtained at initial clinical
assessment on entering the study (table 1) and following
intervention. These were used to measure fat infiltration
of the lumbar paraspinal musculature. The majority of
images were obtained using a 3 T MRI system (GE
Signa, General Electric Healthcare, USA). Five partici-
pants provided images completed on a 1.5 T MRI
system. Axial T2 weighted non-fat-saturated sequences
were used for evaluation. Fat infiltration and, where pos-
sible, FCSA (defined as the fat free area) was measured
at the lower end plate at the L3L4, L4L5 and L5S1
levels. The region of interest was defined as the area of
erector spinae and multifidus musculature32 33 and per-
centage fat infiltration was calculated for the total area
using a standalone graphical user interface developed in
Matlab R2010a34 (see online supplementary content 5).
Intrauser reliability in selecting the region of interest
and changes in signal intensity was tested using 60
images on two occasions, 2 days apart.

Disk herniation includes reported: disk prolapses, disk
protrusions, disk bulges, annular disk tears and annular
fissures with or without a reported nerve compression.
Facet joint degeneration includes reported degeneration
and facet joint osteophyte formations.

Experimental intervention
After initial testing, participants were instructed regard-
ing their training programme. During a 1 h gym session,
participants were first asked to explain their beliefs
around the causes of their pain to address psychosocial
aspects that are a component of LBP.35 Any areas where
it was felt that their beliefs were contributing towards
their back pain were addressed (see online
supplementary appendix 3). The exercises were deliv-
ered across two sessions (see online supplementary
appendix 1). The 10RM and 6–7RM loads were esti-
mated by the participant and adjusted where necessary
at the end of each set. Emphasis in each of the exercises
was placed on maintaining a neutral lumbopelvic pos-
ition. In participants who were unable to prevent lumbar
flexion when deadlifting off the floor, the bar was raised
to a level in a squat rack where a straight back could be
maintained. Participants were given a booklet containing
their training programme and recorded missed sessions
by crossing them out. Reported adherence was high with
a mean of 2.1 missed sessions from a possible 48.

Coaching cues and support
Participants were filmed (iPad 3, Apple inc) completing
their exercises with a commentary of the coaching
points and given access to those videos online using
Dartfish video analysis software (Dartfish, USA).
Externally focused coaching cues were used to maximise
skill acquisition and learning36; these are listed in online
supplementary appendix 4.
Outcome measures of interest were pain VAS, ODI

and Euro-Qol, peak vGRF) during IMTP, lumbar exten-
sor time to exhaustion, percentage fat infiltration and
cross-sectional area of lumbar paraspinals at L3L4, L4L5
and L5S1 levels, and kinetic and kinematic variables
about the ankle, knee, hip and torso throughout a body-
weight squat.

Statistical analysis
All values were reported as mean, SD and 95% CI (for
parametric data) (mean±SD CI), and percentage
change following intervention. All data were checked for
normality using a Shapiro-Wilk test. Parametric data
were assessed using a paired samples t test and a
repeated measures one-way ANOVA with Bonferroni
adjusted post hoc pair-wise comparison. Non-parametric
data were assessed using a Wilcoxon-Signed rank test. A
p level of <0.05 was adopted for statistical significance.
Intraclass correlation coefficients were used to examine
intrauser (ICC [3 1]) reliability of measuring lumbar fat
infiltration. The ICC classifications of Fleiss37 were used

Table 1 A list of radiology reported MRI diagnoses on

entering the study at L3L4, L4L5 and L5S1 levels and the

number of times they were reported across all participants

Reported finding

Number of times

reported

Disk herniation without nerve

compression

33

Disk herniation with nerve

compression

11

Disk desiccation without

herniation

1

Modic changes 2

Facet joint degeneration 20
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to describe the range of ICC values where less than 0.4
was poor, between 0.4 and 0.75 was fair to good, and
greater than 0.75 was excellent. All statistical analyses
were performed using IBM SPSS (V.21; IBM, New York,
New York, USA).

RESULTS
Pain, disability, quality of life, strength and endurance
The participants showed significant improvement in
ODI, pain VAS and Euro-Qol scores at weeks 4 and 16
compared to baseline (table 2). The BS test scores
showed significant increases between baseline and week
16. No significant improvement (p=0.08) was seen in
maximum isometric strength.

Fat infiltration
Significant reductions in percentage fat infiltration were
seen bilaterally at L3L4 and L4L5 levels from preinter-
vention to postintervention (table 3). No significant
changes were seen at the L5S1 level. Significant
increases in FCSA were seen bilaterally at L3L4 and
L4L5 levels from preintervention to postintervention
(table 4). The ICC was calculated at 0.97 giving an excel-
lent level of intrauser reliability.37

Biomechanics
Significant increases in centre of mass vertical velocity,
pelvis tilt angle, hip flexion angle, knee moment and
hip moment were seen throughout the waveforms
(figures 1–5). No significant differences in ankle, knee,
thorax and thorax to pelvis angles were seen. The
reader should note the differences in knee, thorax to
pelvis angle were close to significance.

DISCUSSION
This study demonstrates significant reductions in pain
and disability (72% and 76% respectively) in patients
with comorbidities presenting with LBP following a
16-week RT programme. These changes are large com-
pared to other whole body RT interventions where posi-
tive impacts on mean pain scores (26%,38 39%39) and
disability (46%,38 40%39) have been described. The

presence of a lower baseline disability level of the partici-
pants (22.9±1.2 vs 43.1±3.338 40.4±2.439), but similar
baseline pain level, was noted. While it could be sug-
gested the greater the levels of modifiable disability
present, the greater the chance for possible enhance-
ments, the opposite was seen.
Associations have been made between fear avoidance

beliefs and LBP40 and it has also been shown that those
with LBP demonstrate protective guarding behaviour.12

This represents a freezing of degrees of freedom which
is seen in early skill acquisition41 and is achieved by stif-
fening up surrounding musculature.42 Higher levels of
fat infiltration and reduced cross-sectional areas of the
lumbar paraspinals have also been linked with LBP.17–20

The present intervention differed from comparable
RT studies38 39 by addressing patient beliefs which has
been suggested can increase patient activity levels43

potentially breaking down belief based barriers to the
RT. It utilised external cueing to enhance motor learn-
ing44 and free-weight exercises with higher intensity
loading (75–83% RM vs 55–83% RM) to maximise the
motor control challenge23 and mechanical stimulus.
Adaptations to this type of RT include altered agonist
antagonist coactivation patterns,45 or an un-freezing of
degrees of freedom, and muscle hypertrophy.25 It is pos-
sible that the combined effect of these differences led to
larger improvements in pain and disability.

Biomechanics
Increased velocity was observed throughout the squat
movement mirroring the findings of Shum et al.46 They
found significantly higher velocities in asymptomatic
participants during sit to stand movements suggesting
that slower movements were used to prevent provocation
of pain. Muscle guarding patterns such as reduced
speed have been listed as a movement impairment for
those with LBP.3 The increased hip flexion and pelvis tilt
angles occurred as a result of the RT cueing aimed at
reducing the lumbar flexion and active extension pat-
terns that have been associated with LBP.3

To the author’s knowledge, this is the first study to
demonstrate altered motor patterns in those with LBP
using free weight RT. Moreover, these alterations moved

Table 2 Pain, disability, quality of life, isometric strength and endurance (mean±SD, 95% CI)

Mean±SD, 95% CI Percentage change

Baseline 4 weeks 16 weeks 0–4 0–16 4–16

VAS 4.5±2.2*† 2.8±1.6‡ 1.3±1.4 −39 −72 −54
ODI 22.9±1.2*† 13.4±9.1‡ 5.4±5.7 −42 −76 −60
Euro-Qol 0.7±0.2*† 0.8±0.12‡ 0.9±0.1 +14 +27 +11

IMTP (N/kg) 23.5±4.3, 21.8 to 25.2 24.1±4.7, 22.23 to 25.9 +3

BS (s) 89±43†, 72.1 to 105.3 94±38, 79.0 to 108.0 104±41, 88.9 to 120.3 +5 +18 +12

Significant differences (p≤0.05).
*Between baseline and week 4.
†Between baseline and week 16.
‡Between weeks 4 and 16.
BS, Biering-Sorensen back extension endurance test; IMTP, Isometric mid-thigh pull; ODI, Oswestry Disability Index; VAS, Visual Analogue Scale.
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Table 4 Functional cross-sectional area (mm2)±SD, 95% CI of the 15 participants who had pre and post MRIs

Lumbar level Left pre Left post Change (%) Right pre Right post Change (%)

L3-L4 85.8±10.2,* 80.6 to 91 89.1±7.5, 85.3 to 92.9 +3.8 87.4±7.5,* 83.7 to 91.3 90.0±6.0, 86.9 to 93.0 +2.9

L5-L5 84.3±8.4,* 80.1 to 88.7 86.9±6.7, 83.5 to 90.3 +3.0 86.0±7.0,* 82.5 to 89.5 87.7±6.7, 84.3 to 91.1 +1.9

L5-S1 81.8±6.4, 78.6 to 85.1 81.7±7.0, 78.1 to 85.2 −0.2 81.3±7.3, 77.6 to 85.0 82.8±7.9, 78.8 to 86.8 +1.8

*Significant difference (p≤0.05) between baseline and week 16.

Table 3 Mean percentage fat infiltration±SD, 95% CI of the lumbar paraspinal muscles

Left pre mean Left post mean Change (%) Right pre mean Right post mean Change

L3L4

Total 13.0±8.2* 9.8 to 16.2 10.0±6.3, 7.56 to 12.46 −23 12.1±6.1,* 9.7 to 14.5 9.4±5.3, 7.3 to 11.5 −22
R1 2.8±1.1* 2.3 to 3.2 2.1±1.2, 1.7 to 2.6 −23 2.6±0.9,* 2.2 to 2.9 2.2±1.2, 1.7 to 2.6 −16
R2 2.8±2.1* 2.0 to 3.6 2.3±2.1, 1.5 to 3.1 −19 2.3±1.6,* 1.7 to 3.0 1.8±1.3, 1.3 to 2.3 −22
R3 2.3±2.2* 1.4 to 3.2 1.7±1.4, 1.1 to 2.2 −28 2.2±1.7,* 1.5 to 2.8 1.7±1.3, 1.2 to 2.2 −22
R4 1.7±1.6* 1.1 to 2.3 1.2±0.9, 0.9 to 1.5 −29 1.8±1.5,* 1.2 to 2.4 1.3±0.9, 1.0 to 1.7 −25
R5 2.1±1.3* 1.5 to 2.6 1.6±1.1, 1.1 to 2.0 −24 2.1±1.3,* 1.6 to 2.6 1.5±1.0, 1.1 to 1.9 −29
R6 1.7±1.1 1.2 to 2.1 1.4±1.1, 1.0 to 1.8 −15 1.6±1.0,* 1.2 to 2.0 1.2±1.0, 0.8 to 1.6 −22

L4L5

Total 14.3±7.0,* 11.6 to 17.1 11.8±6.0, 9.4 to 14.1 −18 13.6±5.6,* 11.5 to 15.8 11.7±5.6, 9.6 to 13.9 −14
R1 3.3±1.2, 2.8 to 3.7 2.8±1.4, 2.3 to 3.8 −14 3.0±1.0, 2.6 to 3.4 3.2±1.4, 2.7 to 3.8 +6

R2 4.1±2.2, 3.3 to 5.0 3.7±2.3, 2.8 to 4.6 −10 3.6±1.9,* 2.9 to 4.4 3.1±2.0, 2.3 to 3.9 −15
R3 2.6±1.5,* 2.0 to 3.2 2.0±1.6, 1.4 to 2.6 −21 2.6±1.9,* 1.9 to 3.4 2.2±1.8, 1.5 to 2.9 −17
R4 1.7±1.3,* 1.2 to 2.2 1.4±1.1, 1.0 to 1.8 −19 1.9±1.6,* 1.3 to 2.5 1.5±1.3, 1.0 to 2.0 −19
R5 1.6±1.2,* 1.1 to 2.1 1.1±0.8, 0.8 to 1.4 −32 1.6±1.1,* 1.2 to 2.0 1.1±0.7, 0.8 to 1.4 −31
R6 1.7±1.0,* 1.3 to 2.1 1.2±0.8, 1.0 to 1.5 −27 1.8±1.1,* 1.3 to 2.2 1.3±0.8, 1.0 to 1.7 −25

L5S1

Total 18.0±5.9 15.7 to 20.3 17.3±7.0 14.6 to 20.1 −3 17.8±6.2 15.4 to 20.3 16.3±7.2, 13.5 to 19.1 −8
R1 4.1±1.6 3.4 to 4.7 3.9±1.7 3.2 to 4.5 −5 4.1±1.3 3.6 to 4.6 3.9±1.4, 3.4 to 4.5 −4
R2 6.3±2.0 5.6 to 7.1 6.1±2.4 5.2 to 7.1 −3 5.4±2.1 4.6 to 6.3 5.3±2.6, 4.3 to 6.3 −2
R3 4.2±2.3 3.3 to 5.1 4.1±2.3 3.2 to 5.0 −3 4.2±2.2 3.4 to 5.1 3.7±2.5, 2.8 to 4.7 −12
R4 2.4±1.6 1.8 to 3.1 2.2±1.5 1.6 to 2.8 −10 2.5±1.5 2.0 to 3.1 2.0±1.8, 1.3 to 2.8 −20
R5 1.2±0.8 0.9 to 1.5 1.3±1.2 0.8 to 1.8 +7 1.5±0.9* 1.2 to 1.9 1.2±1.1, 0.8 to 1.7 −22
R6 1.4±0.9 1.0 to 1.7 1.3±1.3 0.8 to 1.8 −8 1.4±0.8 1.1 to 1.7 1.3±1.2, 0.8 to 1.8 −6

*Significant difference (p≤0.05) between baseline and week 16.
R1-R6 are the regions away from the centre of the spinal cord where region 1 is closest and region 6 furthest.
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participants towards the increased movement velocities
seen in asymptomatic populations.46 Future work could
utilise electromyography to observe changes in muscle
recruitment patterns.

Paraspinal fat infiltration and FCSA
The reduction in fat infiltration and increased FCSA
observed in the lumbar paraspinals are in line with
changes found elsewhere as a result of RT.47 48 These
changes, the opposite of which have been associated

with LBP,18 20 49 may have enhanced force generation
capabilities in this area50 improving load tolerance and
contributing to reduced pain as has previously been
observed in RT interventions.51

Changes in fat infiltration and FCSA were seen at the
L3L4 and L4L5 levels but not at the L5S1 level. It was
noted that percentages of fat infiltration were much
higher at L5S1 than those above preintervention and
postintervention. This may suggest that a higher fat
content at L5S1 is a relatively normal state thus limiting

Figure 1 Waveform of the vertical centre of mass velocity (mm/s) throughout the squat movement. Dark grey indicates areas of

significant difference and lighter grey indicates significance before correction.

Figure 2 Waveform of the pelvis angles (degrees) throughout the squat movement. Dark grey indicates areas of significant

difference and lighter grey indicates significance before correction.
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the scope for improvement, that higher levels of fat infil-
tration are more resilient to change or that the level of
loading may have been lower in this region. These possi-
bilities require further investigation.

Strength
A significant improvement in strength endurance during
the BS test was observed in line with other studies.39

This is indicative of an increased ability to resist lumbar

flexion which, when viewed with the changes in fat infil-
tration, suggests improved conditioning of the lumbar
extensors, a deconditioning of which has been suggested
as a risk factor for LBP.24

This intervention applies many of the concepts that
would be commonplace in training sporting popula-
tions, including progressive overload and high intensity
RT52 with the aim of changing the way the participant
moves. This study demonstrates that it is possible to

Figure 3 Waveform of the hip angles (degrees) throughout the squat movement. Dark grey indicates areas of significant

difference and lighter grey indicates significance before correction.

Figure 4 Waveform of the knee moment (Nmm) throughout the squat movement. Dark grey indicates areas of significant

difference and lighter grey indicates significance before correction.
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impact many of the factors that have been suggested to
contribute to LBP by applying basic RT practices.
An interesting finding is that no significant increase in

IMTP strength was seen despite participants observed to
be lifting greater loads dynamically throughout the inter-
vention. It is possible that the increases in loads lifted in
the exercises were as a result of neural changes,
common in RT,45 53 specific to each exercise. Therefore,
despite enhanced skill acquisition, the loads may not
have reached levels where absolute maximum IMTP
strength could be improved. However, it should be
noted from an ecological validity perspective that most
daily activities that involve high levels of lumbar muscu-
lar loading are likely to be dynamic rather than
isometric.

Limitations
Two different MRI lumbar spine protocols were utilised
as a number of participants had existing 1.5 T MRIs at
presentation. To prevent unnecessary repeat imaging,
these were not duplicated. The 1.5 T imaging came
without the pixel-spacing values necessary to compare
FCSA between different images.
The study was a cohort design, and while the inclusion

of a comparison cohort would have added strength to
the results, this was a pilot intervention and as such
future work may be used to determine effectiveness rela-
tive to other interventions.

CONCLUSIONS
This study demonstrates that 16 weeks free weight RT
addressing strength, motor control and physiological
aspects is effective in participants with chronic LBP. This

is the first study to identify changes in fat infiltration as
an objective marker of improvement and highlights that
changes are possible across comorbidities. Positive out-
comes including reduced pain and disability, improve-
ment in quality of life, strength endurance and lumbar
paraspinal muscle quality in patients with LBP were
seen, whereas changes in maximum strength were not
observed as expected.
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