Introduction
Physical activity is related to multiple health outcomes. Increasing physical activity can reduce the risk of non-communicable diseases including cardiovascular diseases, cancer, chronic respiratory diseases and diabetes. Physical activity also plays an important role in improving life expectancy. Adults in developed nations are not considered to be adequately physically active despite it being the fourth leading cause of death worldwide.1
Increasingly health recommendations about human movement are concerned with physical activity, sedentary behaviour and overall movement throughout the day.2 Accelerometers are the most common tools used to measure human activity in free-living conditions.3 Most wearable devices and cell phones are equipped with accelerometers. Accelerometers measure the change of velocity over time and report acceleration in terms of multiples of gravitational force. Unprocessed acceleration data are often referred to as raw acceleration data. To develop measures of different activity types (eg, sitting, lying down, walking) or activity intensities (eg, walking at different speeds or Metabolic Equivalent Task (METS)), physical activity researchers have typically used research grade accelerometers placed on the hip or worn on the wrist.4 Reliance on hip or wrist worn research grade devices may limit the scale at which data can be collected in the population. Gathering accelerometer data from cell phones may be more convenient and affordable than using research-grade accelerometers. Computer science researchers in the field of human activity recognition have tended to use smartphones and attempted to predict activity type/intensities independent of the wear location of the device.5 While having accelerometers placed at a known wear location has distinct advantages, smartphones are ubiquitous and often worn in different locations by people. Device wear location is known to impact activity type/intensity predictions.6
To date, limited research has developed either cut points based or machine learning (ML)-based models to predict both activity types and activity intensities from smartphones at known wear locations. Activity prediction studies have typically either focused on predicting activity types or activity intensity. To our knowledge, only two studies have combined activity type and activity intensity categories with ML in order to predict activity.7 8
A cut-point approach, common in physical activity research,9 typically uses a single summary measure of acceleration (eg, counts) and applies thresholds, known as cut-points, to define categories of activity types or physical activity intensity. For example, the one set of cut-points define physical activity intensities as sedentary (<99 counts), light (100–759 counts), moderate intensity (760–5724 counts) and vigorous (5725 max counts).10 11 ML approaches to predicting activity types/intensities using accelerometer data rely on using multiple features (ie, variables) derived from the raw accelerometer signal12 and applying different ML models.
The purpose of this study was to develop methods for estimating human activity types/intensities using accelerometers from smartphones in three different wear locations, the participants’ hand, the participants’ pant pockets and a backpack. We developed and tested cut-point and ML methods based on Actigraph counts and on raw accelerometer data.