DISCUSSION
This is the first study to analyse three different injury recording methods (injury recording at the field side by FIH medical officials, retrospective video analysis and reports by the teams’ medical staff) at a single field hockey tournament.
Overall injury data by recording technique
The most striking observation was the difference in the overall injury numbers ranging from 24.8 to 57.9 injuries per 1000 player match hours (PMH) among the three recording techniques. This difference might be due to the fact that each recording technique focusses on the registration of different subsets of injuries.11 13 14 The acquisition of injuries only when the umpire stops the time clock for a new musculoskeletal complaint, as in the MIR and video technique, can be considered as a ‘narrow’ recording technique resulting in fewer injuries being identified. The additional registration of medical attention and overuse injuries, as in the case in the DMR of our study, encompasses a wider range of injuries (‘broad’ recording technique), leading to higher injury numbers.11 15
The variation of the injury incidence by different recording techniques is reflected by the reported range of data in the literature. The reported 1000 PMH injury incidence in men`s field hockey reveals a range between 12.3 injuries/1000 PMH (Dutch elite hockey players; questionnaire on health problems answered by the player), 47 injuries/1000 PMH (Olympic Games 2004, team physician injury report form), 48.3/1000 PMH for men (professional international field hockey tournaments, match injury report forms from medical officials), and 86 injuries/1000 PMH in boys (international elite youth field hockey tournaments, match injury report forms from medical officials).1 8 16 17
A comprehensive injury base has not been built up due to the heterogeneity of recording methods in youth and adult field hockey.9 Our data from a single field hockey tournament clearly show that the currently available injury assessment methods reveal different injury numbers. Therefore, defining a standardised injury recording procedure in field hockey should be defined.
Injury characteristics by recording technique
All injury assessment methods showed that most of the injuries occurred during the second half of the game, which has been shown before in other studies.1 10 The circle has been shown to be the main location for injuries, as revealed in previous studies.1 8 10 The MIR, however, registered most injuries in the midfield, which has not yet been shown in other studies.
One of the most important and challenging aspects of injury research is the correct recording of the injury mechanism.11 15 Interestingly, in the here presented data of the video analysis, a hit by a ball was the reason for an injury in 50% of cases. This incidence was much higher compared to the recordings of the other two methods. It is suggestible, that a person registering injuries at the sideline might not be able to correctly state whether an injury was caused by a hit of a stick or a (deflected) ball. In our experience, this situation is sometimes even difficult to evaluate by video. In video cases, however, slow motion and close-up views will usually disclose the body part and mechanism of injury.
All three recording methods documented contusions as the most frequent injury. It stands out that the video analysis demonstrated that the most common injuries were contusions (72%) but did not reveal injuries as abrasion or bruises. This finding might have an obvious reason as the video analysis of injuries only reveals the acute status. A developing haematoma, abrasion, or any other injury sequela, such as a concussion, can only be examined by medical personnel on the pitch. DMR recording technique is therefore the most valuable assessment technique in the case of evaluating injury types.
The lower limb is the most affected site in previously published studies referring to injured body parts in field hockey.8 16 18 This was also shown by the three recording techniques in the here presented study. By video analysis, 36% of the injuries affected the head and face as the second most injured body part. This percentage was twice as high as in the recorded numbers by the two other methods. As stated above, it might have been difficult to see which body part was injured. Video analysis and physical examination by the teams’ medical staff may best document the injured body part correctly. It is important to note that the MIR had a very high number of unknown injured body parts (29%), hinting at a weakness of this recording technique.
Concussions
Special attention has to be directed to the assessment of concussion. A consensus group of seven different sports has lately defined video signs for concussion.19 In this paper, however, we excluded video analysis as a tool to diagnose concussions. We believe those clinical symptoms and physical findings at the field site are still the most reliable signs to diagnose a concussion. In our analysis, two concussions were documented by the MIR during competition. The DMR classified these two head injuries as head contusion and not as concussions. The medical staff of a team has the best position to define the severity of a head injury. Their medical attention comes the closest to the athletes. They have the position for follow-up as concussion symptoms can evolve over time and become apparent later during or after the match.
Overuse injuries
Overuse injuries have not yet been assessed comprehensively in field hockey. We found one report of overuse injuries in Dutch elite field hockey stating a prevalence of 14% by self-assessing questionnaires of the players.17 In our data, 16.1% (9/56 injuries) were defined as overuse.
Injuries in training
Using the DMR enabled us to trace injuries that occurred in training sessions. We found that 12.5% of all injuries occurred in training. The number of training hours were not documented and therefore injuries per 1000 player training hours could not be calculated. However, we can conclude that training injuries exist and that they consist of the same injury types as match injuries (eg, contusion, distorsion, concussion). Almost half of all injuries in training were overuse injuries, meaning injuries without a direct causative event.
Limitations
It was not possible to overlay and cross-check all injuries of the three injury recording methods, because the recording of the match time of an injury differed among the methods. In addition, the player numbers were deliberately not noted (anonymous data sampling) making it impossible to correctly assign one injury to all three recording methods.
Another limitation was the incomplete data in some categories. Especially, in the MIR incomplete data were frequent in recording of injury types (21.5%), injury mechanism (10.7%), and injury location (7.1%). The incompleteness of data in medical report forms is a known problem, as exemplified in other sports, such as in football.20 We have made the same observation in professional field hockey.8