Article Text

Download PDFPDF

Biomechanical risk factors of lower back pain in cricket fast bowlers using inertial measurement units: a prospective and retrospective investigation
  1. Billy Senington1,
  2. Raymond Y Lee2,
  3. Jonathan M Williams3
  1. 1 School of Biosciences and Medicine, University of Surrey, Guildford, UK
  2. 2 Faculty of Technology, University of Portsmouth, Portsmouth, UK
  3. 3 Department of Rehabilitation and Sport Sciences, Bournemouth University, Bournemouth, UK
  1. Correspondence to Dr Jonathan M Williams; jwilliams{at}bournemouth.ac.uk

Abstract

Objectives To investigate spinal kinematics, tibial and sacral impacts during fast bowling, among bowlers with a history of low back pain (LBP) (retrospective) and bowlers who developed LBP in the follow-up season (prospective).

Methods 35 elite male fast bowlers; senior (n=14; age=24.1±4.3 years; height=1.89±0.05 m; weight=89.2±4.6 kg) and junior (n=21; age=16.9±0.7; height=1.81±0.05; weight=73.0±9.2 kg) were recruited from professional county cricket clubs. LBP history was gathered by questionnaire and development of LBP was monitored for the follow-up season. Spinal kinematics, tibial and sacral impacts were captured using inertial measurement units placed over S1, L1, T1 and anteromedial tibia. Bonferroni corrected pairwise comparisons and effect sizes were calculated to investigate differences in retrospective and prospective LBP groups.

Results Approximately 38% of juniors (n=8) and 57% of seniors (n=8) reported a history of LBP. No differences were evident in spinal kinematics or impacts between those with LBP history and those without for seniors and juniors. Large effect sizes suggest greater rotation during wind-up (d=1.3) and faster time-to-peak tibial impacts (d=1.5) in those with no history of LBP. One junior (5%) and four (29%) seniors developed LBP. No differences were evident in spinal kinematics or impacts between those who developed LBP and those who did not for seniors. In seniors, those who developed LBP had lower tibial impacts (d=1.3) and greater lumbar extension (d=1.9) during delivery.

Conclusion Retrospective analysis displayed non-significant differences in kinematics and impacts. It is unclear if these are adaptive or impairments. Prospective analysis demonstrated large effect sizes for lumbar extension during bowling suggesting a target for future coaching interventions.

  • spine
  • accelerometer
  • bowling
  • cricket
http://creativecommons.org/licenses/by-nc/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • Presented at This article is derived from the thesis http://eprints.bournemouth.ac.uk/31682/1/SENINGTON%2CBilly_Ph.D._2018.pdf archived in the Bournemouth University repository.

  • Contributors RYL, JMW, BS contributed to the development of the research questions and study design. BS collected the data. JMW developed data processing algorithms. RYL, JMW, BS contributed to the understanding of the findings. JMW developed the first draft and subsequent drafts with significant inputs from BS and RYL. All authors reviewed and approved the final manuscript.

  • Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

  • Competing interests JMW has consulted for THETAmetrix from whom the sensors were acquired.

  • Patient consent for publication Not required.

  • Ethics approval Ethical approval was granted by Bournemouth University Ethics committee.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement Data are available on reasonable request from BS, b.senington@surrey.ac.uk.