Static balance assessments and head impacts
Results from the analysis of variance showed no difference between the three baseline tests in the firm and foam surfaces, respectively, for the double-leg CoPML (F2,18=0.67, p=0.5; F2,20=0.39, p=0.6), CoPAP (F2,18=0.66, p=0.5; F2,20=1.64, p=0.2), CoPT (F2,18=3.87, p=0.06; F2,20=0.34, p=0.7), single-leg CoPML (F2,18=1.85, p=0.1; F2,20=0.19, p=0.8), CoPAP (F2,18=0.68, p=0.5; F2,20=0.13, p=0.8) and CoPT (F2,18=1.92, p=0.1; F2,22=0.11, p=0.9) and tandem-leg stance CoPML (F1,10.5=0.87, p=0.3; F1.3,13=0.7, p=0.4), CoPAP (F1,10=0.98, p=0.3; F1.2,12.3=0.95, p=0.3) and CoPT (F1,10.4=1.22, p=0.3; F2,20=1.29, p=0.3).
On the firm surface, group analysis showed differences in the CoPAP (t(12)=-2.56; p=0.02; d=0.7) and CoPT (t(12)=-2.33; p=0.03; d=0.6) and on the double-leg stance (figure 1A). There was no difference in the CoPML in the double-leg stance, nor in CoPML, CoPAP and COPT in the single-leg and tandem-leg stances (p>0.05). Individual analysis showed that five and six participants worsened performance in the CoPAP and CoPT, respectively (figure 1B).
Figure 1Pre–Post comparison of group (a) and individual (b) results of medial-lateral (CoPML), anterior-posterior (CoPAP), and total (CoPT) centre of pressure in the double-leg stance on a firm surface. *p<0.05.
Over the foam surface, individual analysis showed that performance for the majority of participants (seven for CoPML and CoPAP; nine for CoPT) significantly worsened in the tandem-leg stance at the end of season (figure 2B). Changes were 180, 160, and 140% for the CoPML (t(12)=-2.86; p=0.01; d=0.8) CoPAP (t(12)=-2.55; p=0.02; d=0.7), and CoPT (t(12)=-3.43; p<0.01; d=0.9), respectively (figure 2A). There was no difference in the CoPML, CoPAP, and CoPT in the double- and single-leg stances (p>0.05).
Figure 2Pre-Post comparison of group (a) and individual (b) results of medial-lateral (CoPML), anterior-posterior (CoPAP) and total (CoPT) centre of pressure in the tandem-leg stance over a foam surface. *p<0.05; **p<0.01.
Eleven out of 13 (84.6%) participants accounted for a total of 172 impacts considered as potential concussive events throughout the six games season. For each athlete-exposure (ie, one athlete in one game), 2.2 potential concussive events were registered, with a minimum of 2 and maximum of 34 events per participant (mean±SD: 15.6±11; 95% CI: 6.5 to 19.8; median: 20; mode: 20). The two athletes that did not present any potential concussive event during the season games were further investigated. Performance in the double-leg firm was maintained (CoPML and CoPAP) and increased (CoPT) in one athlete and worsened in the other. In the tandem-leg foam, both athletes’ performance worsened in all variables.
Dynamic postural assessment
Analysis of variance showed no difference between the three baseline tests for tTarget (F2,20=8.73, p=0.05), tCentre (F1.1,12=3.96, p=0.07) and tTotal (F1,10.4=4.79, p=0.06). Group analysis showed that tCentre (t(12)=3.48; p<0.01; d=1.2) and tTotal (t(12)=4.19; p<0.01; d=1.2) were decreased (ie, improved performance) in the post season (figure 3A). Individual analysis suggests that performance was improved by seven and maintained by six athletes (figure 3B). No difference was shown in tTarget (t(12)=2.15; p=0.05; d=0.5), where four athletes improved, six maintained and three worsened performance.
Figure 3Time to reach the target (tTarget), to get back to centre (tCentre) and the sum of them (tTotal) in the dynamic postural test; group (a) and individual (b) pre versus post analysis. *p<0.05.
Spinal cord excitability
Reflex amplitudes (normalised to supramaximal M-wave amplitudes) were not significantly different from pre to post, confirming that our measures were well controlled in the different time points of data collection. Pre-season left and right Hmax/Mmax ratios were 54% and 63%, while post-season values were 42% and 45%, respectively. Pre-season left and right H-reflex amplitudes were 46±11.6 and 48.9%±13% of Hmax (32.4±21.7 and 26.4%±18.9% of Mmax, respectively), while post season amplitudes were 65±14 and 65.6%±14% of Hmax (31.6±14.7 and 27.3%±15.1% of Mmax, respectively). There were no statistically significant changes in H-reflex amplitude for left (p=0.67) or right (p=0.29) legs. M-wave amplitudes on the left and right sides were 6.2±7 and 6.2%±9.4% of Mmax in the pre-season, while in post season amplitudes were 6.9±10.2 and 8.3%±7%, respectively.
No difference was found between time points in the coefficient of variation for the right (pre: 41±28 vs post: 32%±21%; p=0.31, d=0.3) and left legs (pre: 42±33 vs post: 31%±17%; p=0.27, d=0.2). Likewise, the CCV was unchanged from pre (0.5±0.13) to post (0.53±0.16) (p=0.54, d=0.2).
To assess relative spinal cord excitability in this sample of contact sport athletes, pre-season baseline values from the present study were compared with original data on recreationally active (non-contact sport) participants from Mezzarane et al,28 and results are shown in figure 4. The CCV was significantly higher in the present study (p<0.001, d=2.63), whereas no difference was observed for the coefficient of variation of the right (p=0.16, d=0.58) and left legs (p=0.1, d=0.67).
Figure 4Comparison between non-contact control population from Mezzarane et al (2017) with the pre-season data of our sample. Mean±SD of cross covariance (CCV) (left Y axis) and coefficient of variation (%) for right and left legs (right Y axis).*p<0.001