Methods
Study design, setting and patient involvement
This study was a pilot, multicentre RCT (figure 1). Data collection and treatment occurred at The Movement Science Research Center at Washington University’s Program in Physical Therapy and The Physical Therapy – Clinical and Translational Research Center at the University of Pittsburgh. Washington University served as the coordinating centre and single site institutional review board (IRB). This study was approved by Human Research Protection Offices of Washington University and University of Pittsburgh. All patients signed an informed consent statement prior to participating. Patients were not involved in the design, recruitment or conduct of the study.
Figure 1Study flow diagram. CONSORT flow diagram adapted. CONSORT, Consolidated Standards of Reporting Trials; WU, Washington University; UP, University of Pittsburgh. *inclusion criteria categories are not mutually exclusive.
Manual of operations (MOP) development and training
An MOP was developed to document standard methods for all study components. To optimise treatment fidelity, we used the treatment fidelity framework developed by National Institutes of Health’s Behavioral Change Consortium.11 12 Active ingredients believed to affect patient outcomes for each treatment arm were identified and operationally defined. Each treatment protocol was reviewed by experts at both sites to ensure it reflected the underlying theory of its respective approach. The first author led onsite training for examiners (n=2) and treating PTs (n=5); all were PTs with 6–27 years of experience. Training included review and discussion of the MOP, patient scenario role plays to demonstrate assessment and treatment concepts and discussion to identify barriers to study protocol performance and patient treatment adherence. Training time totalled 16 hours per site.
Participants
Patients were recruited between January 2017 and February 2018, from healthcare clinics; research volunteer databases; social media; and other written communications. To be eligible, patients had to be 15–40 years old; report deep hip joint or anterior groin pain that was reproduced with flexion, adduction, internal rotation impingement test13; report pain ≥3/10 and present ≥3 months; and demonstrate functional limitation with modified Harris Hip Score14 <90. Exclusion criteria included previous hip surgery, fracture, infection or pain due to high impact trauma; diagnosed with Legg-Calve-Perthes disease or slipped capital femoral epiphysis; inflammatory disease; neurological involvement affecting balance; pain, numbness or tingling that radiates into thigh; pregnancy; and screening tests indicating hip pain was referred from the spine.
Assessment (baseline and post-treatment)
Patients who passed initial screening were scheduled for clinical examination, which included assessment of final screening criteria and, if the patient was determined to be eligible, baseline assessment. Patients completed self-report questionnaires and participated in assessment of movement patterns and hip strength. Patients were then randomised into MoveTrain or Standard. Thirteen weeks after enrolment, patients returned for post-treatment testing.
Treatments
Treatments were delivered according to the Template for intervention Description and Replication Guidelines.15 Treatment for both groups included 10 supervised sessions over 12 weeks and daily home exercise programme (HEP). Both treatment arms included assessment of patient goals, patient education and HEP instruction. Patient education focused on patient-specific tasks, which were identified using the Patient Specific Functional Scale (PSFS).16 A brief description of each treatment arm is provided below.
Movement pattern training (MoveTrain) (online supplementary appendix A): treatment focus was on task-specific training to improve lower extremity kinematics during functional and patient-specific tasks. Patient education included instruction in abnormal movement patterns and methods to optimise movement patterns during each task. Exercises included repeated practice of tasks using optimised movement patterns. Verbal cues and visual aids were used to assist the patient. Based on patient performance, task difficulty was progressed by varying repetitions performed, increasing load or speed or changing support surface.
Standard rehabilitation (Standard) (online supplementary appendix B): treatment focus was on progressive lower extremity and trunk strengthening and lower extremity flexibility. Patient education included instruction to modify intensity, frequency or duration of patient-specific tasks. Strengthening and flexibility exercises prescribed were selected using current clinical practice guidelines17 and previous reports.5 18 Each patient was progressed by increasing repetitions performed or increasing load.
Primary outcomes: feasibility
Primary outcomes were related to feasibility of the larger trial. Recruitment rate was defined as the number of patients deemed eligible who agreed to participation. Retention rate was defined as the percentage of those who completed post-treatment testing. Patient treatment session adherence was defined as the percentage of supervised visits attended. Patient HEP adherence was defined as the percentage of days the patient reported completing their HEP.
To assess treatment fidelity,11 12 we assessed PT treatment delivery and patient treatment receipt. Treatment delivery was assessed using prestudy assessment and poststudy chart reviews to assess protocol adherence. Prestudy assessment included a written exam and role-played scenarios.19 For role-played scenarios, a checklist was used to document standard performance of active ingredients for each treatment. To assess protocol adherence, a PT who was not involved in providing treatment completed chart reviews. A standard form was used to identify if performance of active ingredients for each treatment arm was documented. Protocol adherence was scored as percentage of active ingredients completed.
In addition to our a prior feasibility outcomes, we assessed patient treatment receipt, which relates to ability to understand key treatment concepts, and ability to independently perform tasks.11 12 Using our previously published methods,19 treatment receipt was scored by the treating PT as the proportion of exercises the patient performed independently.
Secondary outcomes: preliminary effectiveness
Preliminary effectiveness outcomes determined a priori were the Hip dysfunction and Osteoarthritis Outcome Score (HOOS) subscales of activities of daily living (ADL) and symptoms,20 hip adduction angle during a single leg squat and hip muscle strength.
Patient-reported outcome measures
The HOOS is a reliable21–23 and valid21 23 hip-specific patient-reported outcome used to quantify activity limitations among those with hip disorders. The values for the HOOS subscales, including pain, symptoms, ADLs, sport and recreation (Sport) and quality of life range from 0 to 100 with higher scores indicating higher levels physical function. The established values for minimum important change (MIC) for people with HRGP who have undergone arthroscopic surgery are 8, 9, 9, 6, 10 and 11, respectively.23 Values for MIC for non-surgical management are not available. In addition, we collected PSFS16; Patient-Reported Outcomes Measurement Information System (PROMIS) Scores24 25; and Pain Numeric Rating Scale.26 Information for the additional measures are provided in table 4.
Kinematics
A digital camera was used to capture two-dimensional motion while the patient completed three single leg squats.27 figure 2 demonstrates the variables of interest including hip adduction, pelvic tilt (obliquity/drop) and trunk lean (ipsilateral lean). Values of three trials were averaged for each variable. Inter-rater reliability of all measures among our group was excellent (intraclass correlation (ICC3,3:) >0.98, SE of measurements <1°).
Figure 2(A) Initial position. Line A is drawn between the anterior superior iliac spine (ASIS) markers and is the initial position of the pelvis. Line B is drawn from the sternal marker to the midpoint of line A and is the initial position of the trunk. (B) Final depth of squat. Line C is drawn between the ASIS markers and is the final position of the pelvis. Line D is drawn from the sternal marker to the midpoint of line C and is the final position of the trunk. Line E is drawn from the ASIS marker to the femur marker on the weight-bearing leg and is the final position of the femur. (C) Angle measurement. Hip adduction angle is defined by lines C and E. Positive values indicate hip adduction; pelvic excursion is defined by lines A and C. Negative values indicate a pelvic tilt in which the non-weight-bearing side is lowering; trunk excursion is defined by lines B and D. Positive values indicate the trunk is leaning towards the weightbearing limb.
Muscle strength
A microFET3 hand-held dynamometer (Hogan Health Industries, Salt Lake City, Utah, USA) was used to assess hip muscle strength of hip external rotators, internal rotators, abductors, adductors, flexors and extensors. Make tests28 were used, incorporating a strap for resistance. After a practice trial, three maximal trials were performed. Force values of three trials were averaged and used to calculate torque, then normalised by weight and height.29 Strength was not a primary outcome, and this study was funded by an R21 mechanism, which provides limited resources. Performing an inter-rater reliability study of each secondary outcome was simply not feasible within this mechanism. A previous study using similar methods reported high test–retest reliability, ICCs >0.82.
A priori criteria for success
A priori criteria for success included: (1) 46 participants recruited; (2) 90% retention9; (3) 90% adherence to attending treatment sessions; (4) 80% adherence to HEP; and (5) treatment providers scoring at least 95% on prestudy examination and 80% protocol adherence.
We hypothesised MoveTrain would demonstrate greater improvement in HOOS and greater reduction in peak hip adduction during functional tasks compared with Standard, despite possibly demonstrating less hip strength.
Pilot trial sample size
Sample size for primary outcomes was based on precision and assumed that observed rates of adherence and retention would be at least 90%.9 With a sample size of 46 (23/group), 95% CI around observed rates of adherence and retention were expected to be 78%–96% (ie, within 9% of the true rate). The study was designed to estimate effect sizes for treatment outcomes; therefore, the study was 80% powered to detect large effect sizes of 0.9 or above.
Randomisation
Patients were randomised to treatment in 1:1 ratio stratified by site, sex and HOOSSymptoms subgroup (determined from median split of preliminary data). Within each stratum, patients were allocated using a variable block size. Randomisation sequences were generated a priori using a formal probability model and were elicited from the data capture system. Given the nature of treatment, it was not possible to blind treating PTs or patients to treatment assignment. Study personnel performing assessments and kinematic measurements were blinded to group.
Statistical analysis
Fisher’s exact test compared retention and patient adherence to treatment session rates by site and by group. Patient adherence to HEP, therapists’ treatment delivery and patient treatment receipt were compared by site and group using Wilcoxon’s test.
Data collected at pretest and post-test were analysed with analysis of covariance where post-test was the dependent variable, pretest was the covariate and treatment group was the independent variable that tests the null hypothesis that after adjusting for pretest, post-test is not significantly different across treatment groups. A general linear model was used when residuals were normally distributed, and homogeneity of regression lines assumption was satisfied, otherwise non-parametric covariance analysis30 was used. Multinomial generalised estimating equations was used to analyse ordinal pain numeric rating scales.