Discussion
Change in muscle thickness with contraction has been used in other studies34 35 as an indirect means or indication of muscle activation pattern, that is, a larger change in (increased) thickness signifies greater muscle activation. The findings of our study indicate that long-term runners do not activate their core muscles symmetrically when performing an isometric contraction. That is surprising since running consists of repetitive, seemingly equally reciprocal rotational pelvic and lower back movements that should act with similar torques bilaterally on the muscles of the trunk. Specifically, the right TrA and MF (when ML thickness is measured) are activated significantly more during an isometric contraction, compared with their left-side counterparts.
If we generalise our findings of morphology differences during an isometric contraction to muscle activation during running, we can discuss the results of this study in the context of running mechanics: when the right leg advances, the pelvis rotates to the left and the right arm moves posteriorly, taking the trunk into a right rotation. Thus, there is a stimulus to the right TrA to either eccentrically control pelvic rotation to the left or concentrically facilitate trunk rotation to the right. It is also conceivable that the right lower TrA is involved in the eccentric control of the left pelvic rotation, while the right upper TrA is involved in the concentric trunk rotation to the right. The unilateral activation of the TrA is supported by the findings by Allison et al,39 who found that when the left arm is lifted, there is an advanced initial activation of the right TrA muscle acting as a counter rotary torque.39 While the same argument can be made for the left TrA during left leg advancement, our findings do not support that claim.
Alternatively, when the left leg advances, the pelvis rotates to the right, the left arm moves posteriorly, taking the trunk into a left rotation. Thus, there is a stimulus to the right MF to either eccentrically control right pelvic rotation or concentrically facilitate left trunk rotation. It is also plausible that the right lower MF is involved in the eccentric control of the pelvic rotation to the right, while the right upper MF is involved in the concentric trunk rotation to the left. The greater activation of the right-sided core muscles leads us to believe that the cyclical trunk rotations performed during running are produced and controlled by mostly the muscles on the right side, with the right TrA controlling pelvic rotation to the left (trunk rotation to the right) and right MF controlling pelvic rotation to the right (trunk rotation to the left).
As a point of interest, while there was no overall TrA length difference between right and left sides, the muscle was shorter at rest and with contraction on the right side at level L5. The only other side difference at a lumbar level was seen for the MF AP thickness, which was noted at level L1. However, these observations no longer persisted after applying the false discovery method to account for type I error in these lumbar level-specific exploratory analyses. There were no other muscle size differences at rest, suggesting that there were no hypertrophic changes of the involved muscles as a whole.
Other studies have investigated TrA muscle side differences in athletes involved in side dominant or rotational sports. For example, Gildea et al40 explored TrA muscle thickness in ballet dancers who usually have the preference to perform pirouettes to the right. Hides et al41 assessed side difference in TrA thickness in fast bowler cricket players. Side asymmetry of the MF has also been investigated in athletes involved in rotational sports. Smyers Evanson et al42 recruited ballroom dancers who are known to assume a rotated posture for most of their training and performances, and McGegor et al22 assessed athletes involved in competitive rowing, which is an asymmetrical activity. No study has assessed TrA and MF muscle symmetry in runners, which is not considered a side dominant sport.
Our study revealed several correlations between core muscle thickness at rest, with contraction and training load. The positive association between training load and difference between right and left side resting TrA thicknesses indicates that the longer one runs, the larger the side difference becomes. In contrast, the negative association between training load and TrA thickness difference with contraction indicates that the longer one runs, the more symmetrically right and left TrA get activated. This suggests that there is a ‘functional adaptation’ occurring in TrA activation with prolonged running. Specifically, this likely reflects the emphasis on core stability exercise training as a component of traditional resistance exercise training prescribed concurrent to running.43
There was a negative correlation in number of km run/week compared with the difference in right-left muscle thickness during contraction. This finding indicates that the longer the running distance, the less side difference there is in muscle thickness when muscles are activated in a controlled isometric contraction in an MRI machine, or, stated differently, there is more right side activation (increase in TrA thickness) or less left side activation (decrease in TrA thickness) in less experienced/trained individuals. There was a positive association between AP MF thickness increase with contraction and training age, also potentially indicating a preferred activation of the right MF compared with the left that becomes more pronounced with increasing years of training.
All muscle measurements were larger in men compared with those in women, confirming results from other studies.40 44 Gildea et al found larger TrA at rest and with contraction in men, even when controlling for subject height.40 Rho et al reported a larger resting TrA in men, but this difference disappeared when the muscle was contracted.44 Our results showed similar muscle morphology side differences between men and women, with the exception of TrA thickness at rest. In men at rest, the TrA was thicker on the left side, while in women, it was thicker on the right side. Our findings are in contrast to the results by Rho et al,44 who found no side-to-side differences in TrA thickness at rest or with contraction in healthy, low back pain free men and women. There are two major differences between the Rho et al’s and our methodology that could be responsible for our diverging findings: the participants in the Rho et al study performed an abdominal drawing-in manoeuvre, while ours performed a more functional core muscle contraction. Our muscle morphology data were collected with MRI, while their data were collected using ultrasound.
In an attempt to explain our unexpected results, we investigated if handedness was associated with muscle thickness, although Springer et al45 found that hand dominance had no impact on TrA activation in 32 healthy participants aged 18–45 years. When our data were stratified for hand dominance, we found that there was no difference in TrA thickness with contraction in left-hand dominant runners. In fact, the thickness of both TrA with contraction was virtually the same (7.6 mm). Therefore, it seems that the side difference we found was driven by the right-hand dominant participants.
It is not likely that the differences in core muscle morphology are the result of other habitual unilateral movements performed on a daily basis. We asked the participants about their occupation. The answers ranged from sedentary, such as ‘administrator’, ‘customer service representative’, ’medical scientist’, ‘broker’ or ‘manager’ to more dynamic, such as ‘orthopaedic surgeon’, ‘teacher’ and ‘running coach’.
Further possible explanations for the right to left side differences at rest and with contraction include previous unilateral training protocols (eg, resistance training), leg length difference, previous injuries and their rehabilitation protocols. We did not measure any of those variables. Additionally, it is possible that running the same route repeatedly and exclusively, the runner could have obtained muscle imbalance from environmental factors, such as running in circles on a track or on the side of a sloped road.
We have to reject our hypothesis that runners without low back pain exhibit right to left symmetrical core muscles at rest and with contraction. Our study showed that asymmetries in core muscles are found in athletes engaged in endurance running, a seemingly symmetrical activity. An asymmetry in core muscles at rest has been associated with low back pain in several studies,46–49 with the usual finding being that the side of pain demonstrated a smaller MF CSA. Since our study recruited subjects who were pain free, it is not surprising that their MF was symmetrical at rest. The muscle asymmetry found with contraction has to be linked to a mechanism other than pain.
Limitations of this study include the limited generalisability of the results of this study. We measured trunk muscle morphology during an isometric contraction performed in an MRI tube and tried to explain the differences with running mechanics, inferring that isometric muscle contractions performed in supine position and muscle contractions performed during running were similar. Given the rotational, concentric and eccentric characteristics of the actual movements that occur during running, our results can only declare that an isometric contraction in supine position yielded the results described in this study. Our intake form did not include questions on previous unilateral training protocols, leg length discrepancies, previous injuries nor on environmental factors that could impact core muscle imbalance. We only included middle-aged subjects from the Melbourne, Australia area who were asymptomatic and had no history of low back pain. It is not clear if the findings can be generalised to younger and older subjects, to subjects from different geographical regions or to endurance runners who have a history or current low back pain. Lastly, we cannot be sure that a 15% difference in muscle length during contraction is clinically relevant, especially since the participants were free of low back pain.