Discussion
ACL injury as a strong predictor of subsequent injury and specific biomechanical risk factors for reinjury have been identified. To prevent reinjury and osteoarthritis post-ACLR, we need to elucidate whether sports situational factors induce high-risk lower limb biomechanics. Fatigue, synonymous with competitive sports, is frequently cited as one such factor; most ACL injuries occur towards the end of competitive matches when fatigue levels are highest.21–26 Borotikar et al demonstrated that fatigue increases hip flexion and internal rotation in addition to knee abduction and internal rotation in healthy subjects. These biomechanical alterations increase ACL injury risk.8 27–29 Evidence suggests that fatigue induces unique biomechanical alterations after ACL rupture; athletes develop a hip-dominant movement strategy that diminishes with fatigue. A hip dominant gait pattern could reduce reinjury risk by reducing knee joint moments, thus exposing ACL grafts to smaller loads. Such protection would be lost with fatigue. Our findings support the assertion that following ACLR athletes develop a unique, asymmetrical gait. Subjects ran with externally rotated operated limb feet but internally rotated contralateral feet. However, when fatigued, this asymmetry diminished and was no longer significant.
Foot external rotation increases knee valgus angulation and moments, increasing ACL injury risk.27 30 31 Hewett et al showed that landing with valgus knee moments increased the risk of ACL rupture by 250%.32 This suggests that changes in FPA consequent to ACL injury actually increase reinjury risk prior to the onset of fatigue. Valgus moments would reduce loading of the medial compartment of the knee, delaying osteoarthritis progression.33 Research shows that patients with knee osteoarthritis externally rotated their foot during the stance phase of gait as a strategy to reduce arthritic pain and slow arthritis progression.34 Therefore, the gait alteration demonstrated may delay the progression of knee osteoarthritis following ACL injury but increase the risk of ACL graft rupture.
We propose that following ACLR athletes develop a knee protective movement strategy that delays osteoarthritis progression. This may, however, increase rates of ACL graft rupture. When this movement strategy is lost with fatigue, damage to the medial compartment of the knee may accelerate. Studies suggest that increased activation of the lateral hamstring, gastrocnemeus and soleus muscles is required to maintain an externally rotated foot.35 Indeed, increased activation of the lateral hamstrings relative to the medial hamstrings has been demonstrated in subjects with knee osteoarthritis with external rotated feet.36 The increased demands placed on these muscles may render them susceptible to fatigue explaining the breakdown of this protective movement strategy.37–39
Limitations
This study has several limitations. The gait alteration demonstrated may be gender specific, with only four female subjects, we cannot confirm this. To ensure an appropriate sample size, patients were included despite differences in age, postoperative time and concurrent injuries. This has several implications; first, postoperative time had a significant interaction with prefatigue contralateral limb FPA. Second, the inclusion of concurrent injuries may alter results. For example, meniscal injuries accelerate osteoarthritis progression. Therefore, meniscal injuries (rather than the ACL injury) might explain the toe out gait alteration. Third, our subjects had medial hamstring allografts. Residual medial hamstring weakness may have produced a relative increase in lateral hamstring activity, thus increasing operated limb external foot rotation. Using contralateral limbs as controls minimised confounding from variables such as age.
Study subjects were at least 1-year post-ACLR, providing sufficient time to complete rehabilitation. Subjects were on average 45 months post-ACLR (table 2). The rationale for not excluding subjects over a certain postoperative time was that functional deficits will remain unaddressed and persist regardless of how much time had passed.
This study adopted a closed chain exercise designed to induce fatigue in all lower limb muscle groups, inducing peripheral muscular fatigue but not accounting for the central effects of fatigue. However, it allowed utilisation of an objective measure of fatigue; reduction in lower limb power output of over 30%. The subjectivity of perceived fatigue would add a source of confounding. Furthermore, it is reassuring that other studies have demonstrated that neither the level of fatigue nor the precise nature of fatigue protocols alter lower limb biomechanical findings.40 However, we cannot be certain that fatiguing ACLR limbs second did not impact on findings. Subjects ran barefoot which does not simulate competitive sport but was felt to be preferable to confounding from differences in footwear. Furthermore, running on a hard treadmill does not precisely simulate running on grass.
Regarding the risk of bias, tester blinding was not possible for either data collection or analysis. Participants could not be blinded but were unaware of the specific outcome measures being tested.