Discussion
In this study, we sought to better understand the sensitivity, level of instability, reliability and efficacy of tools for monitoring sleep quality in team sport athletes. In this sense, we can understand sleep quality as a variable of complex definition and diagnosis which depends directly on some parameters related to sleep architecture such as sleep efficiency, latency and wakefulness duration105 106 as well as indirect measures such as perception of sleep quality and level of sleepiness.107 108 A more comprehensive understanding of which parameters can adequately indicate sleep quality in team sport athletes has yet to be reported in the literature. In general, 30 measuring instruments were used for sleep quality monitoring (for details see table 2). A meta-analysis was undertaken concerning 15 of these parameters. Four objective parameters inferred by actigraphy had significant results with sleep efficiency presenting a moderate ES with small CV. In addition, three parameters (sleep latency, wake episodes and total wake duration) also showed moderate ES but with large CV. Six other subjective parameters obtained from questionnaires and scales had significant results with moderate and large ES: PSQI_efficiency, Likert scale (based on Hooper), Likert scale (no reference), LJLQ, LJLQ_sleep and RESTQ (Sleep quality).
For the most prevalent instruments, some advantages and disadvantages deserve discussion. Actigraphy was the most commonly used method from practitioners and sports scientists, probably due to the ease of its field application and their high validity and reliability. This assessment uses an accelerometer, similar to a wrist watch which continuously monitors body movements and provides information on long-term sleep–wake patterns in athletes’ natural environment.83 Additionally, actigraphy in combination with sleep diaries has been useful in tracking sleep and ensuring adequate time in bed.6 One of the limitations of activity monitors is that sitting for prolonged periods (eg, on a plane) can be mistakenly scored as sleep by the software algorithm. This highlights the importance of using them in combination with a sleep diary. However, this recommendation was not followed by all studies included in this review (for details see table 4). Actigraphy is particularly suitable for the assessment of sleep schedule disorders because it enables continuous monitoring for extended periods of time.109 Another potential application of actigraphy is monitoring sleep during naturalistic studies of sleep restriction and other imposed demands for athletes (training, travel and competition days).110 It has been shown that actigraphy can validate the compliance of athletes during a sleep restriction/extension home study.111 112 However, we must consider that the main limitations of this method are (1) it only measures activity and rest; (2) it does not provide data on sleep stages, breathing or specific behaviours; and (3) artefacts of movements as induced movements, device removal and motionless wakefulness are threats to validity. In addition, the devices identified in the present study, sold commercially, contain different algorithms, making it difficult to standardise the measured parameters. Specific software uses algorithms to process data based on one of three sleep–wake threshold settings (ie, low, medium or high) for processing actigraphy data. Study reported that a medium sleep–wake threshold (activity counts above 40) should be used to process sleep data for team sport male athletes.83 Therefore, there is a need for a consensus to define the parameters (for details see table 4) and the algorithms used to calculate them.
Based on the actigraphy findings to date, sleep efficiency is recommended for monitoring sleep quality due to its small level of instability (ie, CV <10%) and moderate effect size. On the other hand, the remaining parameters had a large CV (ie, CV >30%) for sleep latency, wake episodes and total wake episode duration presenting a moderate ES. However, the use of these variables would seem problematic in tracking sleep quality. A large CV makes it difficult to detect statistical differences between distinct moments (eg, pre, mid, post) and intervention groups, unless these differences are also very large.25 In practice, this means that when using any of these parameters with large CV to monitor sleep quality, the ES should be large in order to be in a position to identify real variations. When they sought to understand the impact of the games played at night by team sport athletes, researchers found significant differences in sleep efficiency, but not in sleep latency and wake episodes.113 Furthermore, the results of a recent systematic review and meta-analysis on the effects of training and competition on the sleep of elite athletes are in agreement with our findings. The former study found that the sleep quality, measured by sleep efficiency, was lower (3%–4%) the night of night competition compared with previous nights.114 Concerning sleep efficiency, there is inconsistency in operationally defining as other sleep parameters what creates confusion with regard to the conceptualisation and use of the construct by researchers and clinicians (for details see table 4). The source of the inconsistency are the number of equations used to calculate it. Therefore, a proposed equation to minimise error sources uses the ratio of total sleep time (TST) to duration of the sleep episode (DSE). Considering that DSE is defined as sleep onset latency+TST+time awake after initial sleep onset but before the final awakening+time attempting to sleep after final awakening. The proposed formula for sleep efficiency would be sleep efficiency=TST/DSE (×100). TST and DSE can be easily calculated using standard sleep diary entries along with one item from the Expanded Consensus Sleep Diary.115 However, it still needs to be verified for the application with actigraphy.
Questionnaires and diaries are user-friendly instruments, have low cost and can measure a wide range of sleep parameters in several contexts.116 Sleep diary data may be more accurate for the assessment of some sleep parameters than questionnaires.117 Whereas the correlation between subjective and objective measures of quality is modest, subjective reports can provide unique and relevant information. Additionally, diaries can provide information on sleep schedule, night awakenings and related topics.117 Many studies have developed tailored questionnaires that preclude comparisons between studies and populations.116 However, some questionnaires have been validated and established in the field. For instance, the PSQI and ESS are validated and established questionnaires for assessing sleep problems in the general population, but not in athletes. On the other hand, there is the Athlete Sleep Screening Questionnaire proposed by Samuels et al
116 that contains a subjective, self-report, sleep-screening questionnaire for elite athletes. These factors may have contributed to the different findings of the present study regarding the sensitivity level of these instruments. Considering that a large majority (ie, 24 instruments, 80%) used to monitor the sleep quality were obtained from questionnaires and scales, significant results for sensitivity were only found in 25% of these instruments in this meta-analysis.
PSG is considered the gold standard for sleep assessment, based on laboratory or ambulatory monitoring,118 119 as it provides detailed information on sleep architecture and clinical diagnosis.120 In this review, we present evidence that PSG can be useful for objective assessment of daytime sleepiness (eg, multiple sleep latency test, maintenance of wakefulness test) (online supplementary table 3). On the other hand, this method is expensive and usually only one or two nights of monitoring may be afforded. It is necessary to consider that PSG can generate discomfort due to the amount of cables needed, and eventually change the sleeping pattern. Due to its associated discomfort, it is not the preferred method from the sleep pattern of high-performance athletes. This fact hinders its use in most field sports science studies83 118 and explains why there is no study included in this review that have performed pre-evaluations and post-evaluations using PSG. Considering the difficulty of using PSG, many researchers have used indirect methods to evaluate the sleep of athletes and one of the most used evaluations is the actigraphy. This instrument is generally a good choice for those interested in documenting sleep for extended periods of time in the sporting-specific environment due to the ease of application in athletes. Usually associated with actigraphy, some questionnaires and specific scales for sleep investigation are used, perhaps with the intention of complementing the information extracted from the actogram.
Three recent reviews have discussed the role of sleep in the recovery of team sport athletes.8 10 11 These reviews suggested that the physiological and psychological processes that occur during sleep are considered critical to optimal recovery10 11; the detrimental effects of sleep disturbance on postmatch fatigue mechanisms include retardation of muscle glycogen resynthesis, delayed recovery from match-induced muscle damage and/or impairment of muscle repair, impaired cognitive function and increased mental fatigue.10 Moreover, sleep hygiene strategies can be used to reduce sleep disruption following night matches and during recovery days to promote restorative sleep.11 As presented, the recovery and performance of the athlete are associated with good quality and quantity of sleep, but it is modulated by individuals’ characteristics, such as sleep habits, diurnal preferences (chronotype) and daily need for sleep.119 Despite having a relatively standardised ideal sleep amount of time (ie, ~7–8 h/day) for most of the population, many individuals have different needs for hours of sleep per night.120 Individuals are classified according to the duration of sleep as short or long sleepers.121 122 Short sleepers may present good sleep quality perception and recovery status with few hours of sleep, while long sleepers need nine or more hours of sleep to feel recovered or rested.121 122
The preference for bedtime and wake time may also be relevant for a good quality of sleep assessments. The chronotype characteristics present three main classifications: (1) ‘evening types’, who have the habit of dragging the beginning of sleep and the time to wake up, that is, to sleep and wake up later; (2) ‘morning types’, which have the opposite behaviour, they tend to sleep in the first hours of the night and wake up in the early hours of the morning; whereas the (3) ‘indifferent types’ do not present any of the characteristics of these two chronotypes, thus they adapt more easily to circadian alterations of the wake–sleep cycle.123 124
Some limitations of the present study are the inability to access the subjects’ chronotype when quantifying the efficiency of the evaluated parameters. Another possible limitation is that the included studies did not report the causes of the wake episodes (eg, if it was for urination, pain or other discomfort, hunger, thirst, etc). Thus, it is important that the characteristics of the subjects are also taken into account in the search for the best strategy for monitoring sleep quality. Furthermore, we recognise the importance of the sleep quantity for the recovery process, but it was not the focus of this review.
Caution and attention is needed on the part of coaches and researchers when choosing parameters to measure and monitor sleep quality in team sport athletes. In addition to the statistical issues (eg, sensitivity, level of instability, reliability), the advantages and disadvantages of each of the sleep monitoring methods, evaluation logistics and sports modality should be taken into account.