Discussion
We compared cholesterol profiles in two groups of highly trained, ultra-endurance athletes who were chronically adapted to either an LC or HC diet. All LC athletes had total cholesterol >200 mg/dL and LDL-C >100 mg/dL, whereas in a matched group of HC athletes all but two were under these thresholds considered desirable/optimal.27 Despite the high LDL-C, LC athletes had less small LDL particles, and HDL-C levels were considerably higher than expected in trained athletes.12 13 16 17 The exaggerated hypercholesterolaemia exhibited in chronically keto-adapted endurance athletes is counterintuitive in consideration that (1) the cholesterol levels in LC athletes are greater in magnitude than has been reported in non-athletes consuming a ketogenic diet,28 (2) ultra-endurance athletes are reported to have similar or lower total cholesterol and LDL-C than less active individuals,16 17 (3) exercise training studies report either no change or slight reductions in total and LDL-C,15 29 (4) previous studies in endurance athletes fed high-fat diets (50%–85% of energy) for 2–12 weeks indicate total cholesterol concentrations remain under or slightly above 200 mg/dL,18 30 31 and (5) disparate levels of exercise have little impact on the typical cholesterol responses to diets varying in carbohydrate and fat.19 We propose several explanations for the apparent paradox of high-volume exercise training accentuating, as opposed to attenuating, the cholesterolaemic response to a ketogenic diet.
Typical cholesterol profiles associated with ketogenic diets
In a review of 15 low-fat diet comparison studies,28 it was reported that in all cases, a very low-carbohydrate diet led to greater increases in total cholesterol, LDL-C and HDL-C. The mean difference between the relative changes for each diet was 7% for total cholesterol, 9% for LDL-C and 11% for HDL-C. The highest mean increase in LDL-C for any study reviewed was 15%.8 By comparison, total cholesterol, LDL-C and HDL-C were 64%, 79% and 59% higher in LC athletes relative to their HC counterparts. Despite the nearly twofold higher LDL-C concentrations in LC athletes, small LDL particle concentration was 56% lower than HC athletes. The shift from small to large LDL particles is independent of the change in LDL-C and consistent with the strong correlation between dietary carbohydrate and LDL size32 and is in agreement with many other ketogenic diet interventions.7 11 33 High HDL-C and large HDL2-C in LC athletes were expected, but the magnitude of difference is noteworthy. All 10 LC athletes had HDL-C higher than the mean HDL-C level in HC athletes (64 mg/dL). A decrease in serum triglycerides is a hallmark response to a ketogenic diet, but both groups had similar low levels of triglycerides, suggesting that additional mechanism(s) beyond those related to TG lowering account for the differences in HDL-C.
Reasons for hypercholesterolaemic profiles in LC athletes
The hypercholesterolaemia observed in LC athletes could be partially explained by dietary factors including greater intake of saturated fat (86 vs 21 g/day) and cholesterol (844 vs 251 mg/day), and lower intake of fibre (23 vs 57 g/day). Meta-analyses indicate that higher intake of saturated fat34 and cholesterol35 and lower intake of fibre36 are associated with increased blood cholesterol. However, the predicted increase in blood cholesterol from these dietary factors, even if viewed collectively, falls short of explaining the significantly higher blood cholesterol levels in LC athletes. We observed significant associations between dietary cholesterol, saturated fat and fibre intake with blood cholesterol measures, but their individual role is impossible to ascertain from correlations and the high degree of inter-relation among dietary nutrients.
Several biological processes involved in cholesterol homeostasis may be altered in keto-adapted athletes that manifest in increased circulating cholesterol. An increase in dietary cholesterol is normally balanced by some combination of decreased exogenous cholesterol absorption, decreased endogenous cholesterol synthesis and increased biliary cholesterol output such that circulating cholesterol levels are not significantly altered. It is noteworthy that ketogenesis and cholesterol synthesis share a common pathway whereby acetyl CoA is converted to acetoacetyl-CoA and then β-Hydroxy β-methylglutaryl-CoA (HMG-CoA) by thiolase and HMG-CoA synthase, respectively.37 In the synthesis of cholesterol, HMG-CoA is converted to mevalonate by HMG-CoA reductase, whereas in the synthesis of ketones HMG-CoA is converted to acetoacetate by HMG-CoA lyase. Although ketone synthesis occurs exclusively in the mitochondria and cholesterol synthesis in the cytoplasm,37 it is possible for some acetoacetate generated during ketogenesis to diffuse out of the mitochondria and be converted to acetoacetyl-CoA in the cytosol via the action of acetoacetyl-CoA synthetase.38 Thus, the higher flux of fatty acids and ketogenesis in LC athletes in the context of overall high energy expenditures could contribute to increased endogenous synthesis of cholesterol by enhancing the cytosolic substrate pool. Increased circulating lathosterol and to a lesser extent desmosterol expressed relative to total cholesterol are markers of de novo cholesterol synthesis.39 Lathosterol was lower in LC athletes, indicating that cholesterol overproduction is likely not a major contributor to hypercholesterolaemia.40
Campesterol, a marker of exogenous cholesterol absorption, expressed relative to total cholesterol was lower in LC athletes, implying a lower rate of cholesterol absorption may have limited the increase in circulating cholesterol. Serum sitosterol has been demonstrated to positively correlate with cholesterol absorption efficiency41 and is higher in endurance athletes,42 but was not different in this study. Absolute concentrations of cholestanol were higher in LC athletes, implying decreased conversion of cholesterol to the bile acid chenodeoxycholate. Normally, high cholesterol intake is associated with enhanced biliary cholesterol output to prevent hypercholesterolaemia,43 but this mechanism appears to be compromised in LC athletes. The fact that the overall ratio of cholesterol synthesis to absorption markers (ie, the fractional cholesterol balance) was the same between LC and HC athletes is consistent with the fact that greater consumption of cholesterol by LC athletes is translated into an expansion of their circulating cholesterol pool.44 45
There may be an unexpected interaction between keto-adaptation and high-volume endurance exercise that manifests in a hypercholesterolaemic phenotype. The LC athletes had been performing relatively high volumes of endurance training for many years. Metabolically, they exhibited a highly refined ability to derive the majority of their energy from lipids at rest and during training.4 The substantially greater rates of lipolysis and fatty acid oxidation compared with their HC counterparts may also require adaptations in intravascular lipoprotein metabolism to support the overall greater flux of lipid fuels. Serum HDL-C, specifically HDL2-C, raising effects of exercise are partially attributed to increased expression and activity of skeletal muscle lipoprotein lipase, which breaks down circulating triglycerides, resulting in a transfer of cholesterol and other substances to HDL-C.46 It is quite likely keto-adapted athletes increase muscle lipoprotein lipase to enhance use of triglyceride from circulating VLDL particles.47 The greater catabolism of VLDL-TG in LC athletes could result in accumulation of VLDL remnants in the LDL density range.48
There are common polymorphisms in successful endurance athletes49 that might contribute to a hypercholesterolaemic profile in the context of a ketogenic diet. For example, peroxisome proliferator-activated receptor-γ coactivator 1α (PPARGC1A) polymorphisms are related to exceptional endurance capacity50 and cholesterol response to dietary fat.51 Additional research is necessary to determine the influence of genetic variation as a contributor to the hypercholesterolaemic response to ketogenic diets.
Clinical relevance
From a traditional cardiovascular risk perspective, the levels of total and LDL-C observed in LC athletes would classify them as high risk27; however, there are conflicting studies on the role of LDL-C and mortality.52 A broader look at the lipoprotein profile supports low risk of coronary heart disease and type 2 diabetes. LC athletes had extremely high HDL-C, specifically in the large HDL2-C fraction, which is greater in magnitude than would be expected from a ketogenic diet or exercise training alone. They also exhibited low concentrations of triglycerides and small, dense LDL particles. In over 11 000 men and women followed for over a decade, small dense LDL was more strongly associated with an incident of coronary heart disease than traditional blood LDL-C.53 The LP-IR derived from the NMR lipoprotein profile correlates with multiple measures of insulin resistance25 and is associated with an incident of type 2 diabetes.54 The LP-IR was 78% lower in LC athletes, with absolute scores among the lowest values recorded in over 5000 individuals.25
Limitations
Because of the cross-sectional design of this study, we cannot rule out the possibility that LC athletes were by nature more hypercholesterolaemic or they for some unknown reason self-selected to an LC diet. The relatively small sample size should be expanded to include larger more diverse athletes including women. Since all the measurements made in this study were circulating surrogate markers, it will be important in future work to track athletes for longer periods of time while measuring clinical events and relevant indicators of mortality. None of the participants indicated familial hypercholesterolaemia on their medical questionnaire, but we did not perform genetic testing to test for this condition or other genetic variants. Genotyping in future work would help uncover potential interactions of a ketogenic diet with specific polymorphisms that relate to cholesterol metabolism.